Answer:
P = 0.006
Step-by-step explanation:
Given
n = 25 Lamps
each with mean lifetime of 50 hours and standard deviation (SD) of 4 hours
Find probability that the lamp will be burning at end of 1300 hours period.
As we are not given that exact lamp, it means we have to find the probability where any of the lamp burning at the end of 1300 hours, So we have
Suppose i represents lamps
P (∑i from 1 to 25 (
> 1300)) = 1300
= P(
>
) where
represents mean time of a single lamp
= P (Z>
) Z is the standard normal distribution which can be found by using the formula
Z = Mean Time (
) - Life time of each Lamp (50 hours)/ (SD/
)
Z = (52-50)/(4/
) = 2.5
Now, P(Z>2.5) = 0.006 using the standard normal distribution table
Probability that a lamp will be burning at the end of 1300 hours period is 0.006
Answer:
to find the sale price, you need to find what 34% of 82 is.
82 x 0.34 = 27.88
subtract that from the original price
82 - 27.88 = $54.12
you could also multiply 82 by (1 - .34) to get the same answer
82 x (.66) = $54.12
sale price is $54.12
hope this helps:)
Step-by-step explanation:
What is the question marks for?
The First One Answer is
x•(1+xy+x^2y)
Answer:
1.176 grams
Step-by-step explanation:
Given:
Recommended dose
21 mg per day for 6 weeks
Now,
1 week = 7 days
Thus,
number of days in 6 weeks = 6 × 7 = 42 days
Therefore, the total dose = dose per days × number of days
= 21 × 42 = 882 mg
further,
14 mg per day for 2 weeks
Now,
1 week = 7 days
Thus,
number of days in 2 weeks = 2 × 7 = 14 days
Therefore, the total dose = dose per days × number of days
= 14 × 14 = 196 mg
further,
7 mg per day for 2 weeks
Now,
1 week = 7 days
Thus,
number of days in 6 weeks = 2 × 7 = 14 days
Therefore, the total dose = dose per days × number of days
= 7 × 14 = 98 mg
Hence, the total dose = 882 + 196 + 98 = 1176 mg
also,
1 g = 1000 mg
thus,
1176 mg = 1.176 grams
total quantity received during this course is 1.176 grams
In 60 minutes, the machine can sew 300 buttons. The machine sews 5 buttons a minute. 60 x 5 = 300