1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Contact [7]
4 years ago
11

$350 increased by 26%

Mathematics
1 answer:
Whitepunk [10]4 years ago
3 0

Answer:

i believe

Step-by-step explanation:

it is 441

You might be interested in
If I have "at least" $20 in my pocket, what are some
Reptile [31]

Answer: $20.01

$20.99

$20

$80

$1,000

Step-by-step explanation:

The reason why is because they are $20 or more.  if it was $19.99 then no.  

5 0
3 years ago
Taylor Series Questions!
riadik2000 [5.3K]
5.
f(x)=\sin x\implies f(\pi)=0
f'(x)=\cos x\implies f'(\pi)=-1
f''(x)=-\sin x\implies f''(\pi)=0
f'''(x)=-\cos x\implies f'''(\pi)=1

Clearly, each even-order derivative will vanish, and the terms that remain will alternate in sign, so the Taylor series is given by

f(x)=-(x-\pi)+\dfrac{(x-\pi)^3}{3!}-\dfrac{(x-\pi)^5}{5!}+\cdots
f(x)=\displaystyle\sum_{n\ge0}\frac{(-1)^{n-1}(x-\pi)^{2n+1}}{(2n+1)!}

Your answer is off by a sign - the source of this error is the fact that you used the series expansion centered at x=0, not x=\pi, and so the sign on each derivative at x=\pi is opposite of what it should be. I'm sure you can figure out the radius of convergence from here.

- - -

6. Note that this is already a polynomial, so the Taylor series will strongly resemble this and will consist of a finite number of terms. You can get the series by evaluating the derivatives at the given point, or you can simply rewrite the polynomial in x as a polynomial in x-2.

f(x)=x^6-x^4+2\implies f(2)=50
f'(x)=6x^5-4x^3\implies f'(2)=160
f''(x)=30x^4-12x^2\implies f''(2)=432
f'''(x)=120x^3-24x\implies f'''(2)=912
f^{(4)}(x)=360x^2-24\implies f^{(4)}(2)=1416
f^{(5)}(x)=720x\implies f^{(5)}(2)=1440
f^{(6)}(x)=720\implies f^{(6)}(2)=720
f^{(n\ge7)}(x)=0\implies f^{(n\ge7)}(2)=0

\implies f(x)=50+160(x-2)+216(x-2)^2+152(x-2)^3+59(x-2)^4+12(x-2)^5+(x-2)^6

If you expand this, you will end up with f(x) again, so the Taylor series must converge everywhere.

I'll outline the second method. The idea is to find coefficients so that the right hand side below matches the original polynomial:

x^6-x^4+2=(x-2)^6+a_5(x-2)^5+a_4(x-2)^4+a_3(x-2)^3+a_2(x-2)^2+a_1(x-2)+a_0

You would expand the right side, match up the coefficients for the same-power terms on the left, then solve the linear system that comes out of that. You would end up with the same result as with the standard derivative method, though perhaps more work than necessary.

- - -

7. It would help to write the square root as a rational power first:

f(x)=\sqrt x=x^{1/2}\implies f(4)=2
f'(x)=\dfrac{(-1)^0}{2^1}x^{-1/2}\implies f'(4)=\dfrac1{2^2}
f''(x)=\dfrac{(-1)^1}{2^2}x^{-3/2}\implies f''(4)=-\dfrac1{2^5}
f'''(x)=\dfrac{(-1)^2(1\times3)}{2^3}x^{-5/2}\implies f'''(4)=\dfrac3{2^8}
f^{(4)}(x)=\dfrac{(-1)^3(1\times3\times5)}{2^4}x^{-7/2}\implies f^{(4)}(4)=-\dfrac{15}{2^{11}}
f^{(5)}(x)=\dfrac{(-1)^4(1\times3\times5\times7)}{2^5}x^{-9/2}\implies f^{(5)}(4)=\dfrac{105}{2^{14}}

The pattern should be fairly easy to see.

f(x)=2+\dfrac{x-4}{2^2}-\dfrac{(x-4)^2}{2^5\times2!}+\dfrac{3(x-4)^3}{2^8\times3!}-\dfrac{15(x-4)^4}{2^{11}\times4!}+\cdots
f(x)=2+\displaystyle\sum_{n\ge1}\dfrac{(-1)^n(-1\times1\times3\times5\times\cdots\times(2n-3)}{2^{3n-1}n!}(x-4)^n

By the ratio test, the series converges if

\displaystyle\lim_{n\to\infty}\left|\frac{\dfrac{(-1)^{n+1}(-1\times\cdots\times(2n-3)\times(2n-1))(x-4)^{n+1}}{2^{3n+2}(n+1)!}}{\dfrac{(-1)^n(-1\times\cdots\tiems(2n-3))(x-4)^n}{2^{3n-1}n!}}\right|
\implies\displaystyle\frac{|x-4|}8\lim_{n\to\infty}\frac{2n-1}{n+1}=\frac{|x-4|}4
\implies |x-4|

so that the ROC is 4.

- - -

10. Without going into much detail, you should have as your Taylor polynomial

\sin x\approx T_4(x)=\dfrac12+\dfrac{\sqrt3}2\left(x-\dfrac\pi6\right)-\dfrac14\left(x-\dfrac\pi6\right)^2-\dfrac1{4\sqrt3}\left(x-\dfrac\pi6\right)^3+\dfrac1{48}\left(x-\dfrac\pi6\right)^4

Taylor's inequality then asserts that the error of approximation on the interval 0\le x\le\dfrac\pi3 is given by

|\sin x-T_4(x)|=|R_4(x)|\le\dfrac{M\left|x-\frac\pi6\right|^5}{5!}

where M satisfies |f^{(5)}(x)|\le M on the interval.

We know that (\sin x)^{(5)}=\cos x is bounded between -1 and 1, so we know M=1 will suffice. Over the given interval, we have \left|x-\dfrac\pi6\right|\le\dfrac\pi6, so the remainder will be bounded above by

|R_4(x)|\le\dfrac{1\times\left(\frac\pi6\right)^5}{5!}=\dfrac{\pi^5}{933120}\approx0.000328

which is to say, over the interval 0\le x\le\dfrac\pi3, the fourth degree Taylor polynomial approximates the value of \sin x near x=\dfrac\pi6 to within 0.000328.
7 0
4 years ago
The average of 16 and x is 3. Find x.
IrinaK [193]

Answer:

x = - 10

Step-by-step explanation:

Average is calculated as

average = \frac{sumofdata}{count} , thus

\frac{16+x+3}{3} = 3

Multiply both sides by 3 to clear the fraction

19 + x = 9 ( subtract 19 from both sides )

x = - 10

6 0
4 years ago
Read 2 more answers
A diver standing on a boat, 5 ft above sea level, looks straight down and sees coral that is 18 ft below sea level. Let distance
natima [27]
23 for distance and -18 for displacement between them
4 0
4 years ago
State the domain and range of the function represented by the table
ohaa [14]

<span>x (domain)     y(range)
 -4                        -4
 -1
 0
 3 
</span> 
8 0
3 years ago
Other questions:
  • Answer ALL of these CORRECT and you'll get BRAINLIEST! Make sure that you click on the next little picture that's next to the hi
    11·1 answer
  • 30 oatmeal and 48 chocolate chip cookies package into identical containers so that each container has the same number of each ki
    5·2 answers
  • Suppose the base and height are each multiplied by 1/2 what effect would this have on the area
    14·1 answer
  • Y=3x+12 positive or negative
    5·1 answer
  • (PLEASE ANSWER + BRAINLIEST ANSWER!!!)
    11·2 answers
  • 6
    7·1 answer
  • 5/7 x (4 4/27 divided by 3 1/3)
    7·1 answer
  • Math question is attached below<br> and show your work
    15·1 answer
  • 3. On February 1, the balance in your account is $516.81. On July 1,
    10·1 answer
  • Please help!!-- What is the measure of arc AT in the circle O below?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!