1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gelneren [198K]
4 years ago
8

Taylor Series Questions!

Mathematics
1 answer:
riadik2000 [5.3K]4 years ago
7 0
5.
f(x)=\sin x\implies f(\pi)=0
f'(x)=\cos x\implies f'(\pi)=-1
f''(x)=-\sin x\implies f''(\pi)=0
f'''(x)=-\cos x\implies f'''(\pi)=1

Clearly, each even-order derivative will vanish, and the terms that remain will alternate in sign, so the Taylor series is given by

f(x)=-(x-\pi)+\dfrac{(x-\pi)^3}{3!}-\dfrac{(x-\pi)^5}{5!}+\cdots
f(x)=\displaystyle\sum_{n\ge0}\frac{(-1)^{n-1}(x-\pi)^{2n+1}}{(2n+1)!}

Your answer is off by a sign - the source of this error is the fact that you used the series expansion centered at x=0, not x=\pi, and so the sign on each derivative at x=\pi is opposite of what it should be. I'm sure you can figure out the radius of convergence from here.

- - -

6. Note that this is already a polynomial, so the Taylor series will strongly resemble this and will consist of a finite number of terms. You can get the series by evaluating the derivatives at the given point, or you can simply rewrite the polynomial in x as a polynomial in x-2.

f(x)=x^6-x^4+2\implies f(2)=50
f'(x)=6x^5-4x^3\implies f'(2)=160
f''(x)=30x^4-12x^2\implies f''(2)=432
f'''(x)=120x^3-24x\implies f'''(2)=912
f^{(4)}(x)=360x^2-24\implies f^{(4)}(2)=1416
f^{(5)}(x)=720x\implies f^{(5)}(2)=1440
f^{(6)}(x)=720\implies f^{(6)}(2)=720
f^{(n\ge7)}(x)=0\implies f^{(n\ge7)}(2)=0

\implies f(x)=50+160(x-2)+216(x-2)^2+152(x-2)^3+59(x-2)^4+12(x-2)^5+(x-2)^6

If you expand this, you will end up with f(x) again, so the Taylor series must converge everywhere.

I'll outline the second method. The idea is to find coefficients so that the right hand side below matches the original polynomial:

x^6-x^4+2=(x-2)^6+a_5(x-2)^5+a_4(x-2)^4+a_3(x-2)^3+a_2(x-2)^2+a_1(x-2)+a_0

You would expand the right side, match up the coefficients for the same-power terms on the left, then solve the linear system that comes out of that. You would end up with the same result as with the standard derivative method, though perhaps more work than necessary.

- - -

7. It would help to write the square root as a rational power first:

f(x)=\sqrt x=x^{1/2}\implies f(4)=2
f'(x)=\dfrac{(-1)^0}{2^1}x^{-1/2}\implies f'(4)=\dfrac1{2^2}
f''(x)=\dfrac{(-1)^1}{2^2}x^{-3/2}\implies f''(4)=-\dfrac1{2^5}
f'''(x)=\dfrac{(-1)^2(1\times3)}{2^3}x^{-5/2}\implies f'''(4)=\dfrac3{2^8}
f^{(4)}(x)=\dfrac{(-1)^3(1\times3\times5)}{2^4}x^{-7/2}\implies f^{(4)}(4)=-\dfrac{15}{2^{11}}
f^{(5)}(x)=\dfrac{(-1)^4(1\times3\times5\times7)}{2^5}x^{-9/2}\implies f^{(5)}(4)=\dfrac{105}{2^{14}}

The pattern should be fairly easy to see.

f(x)=2+\dfrac{x-4}{2^2}-\dfrac{(x-4)^2}{2^5\times2!}+\dfrac{3(x-4)^3}{2^8\times3!}-\dfrac{15(x-4)^4}{2^{11}\times4!}+\cdots
f(x)=2+\displaystyle\sum_{n\ge1}\dfrac{(-1)^n(-1\times1\times3\times5\times\cdots\times(2n-3)}{2^{3n-1}n!}(x-4)^n

By the ratio test, the series converges if

\displaystyle\lim_{n\to\infty}\left|\frac{\dfrac{(-1)^{n+1}(-1\times\cdots\times(2n-3)\times(2n-1))(x-4)^{n+1}}{2^{3n+2}(n+1)!}}{\dfrac{(-1)^n(-1\times\cdots\tiems(2n-3))(x-4)^n}{2^{3n-1}n!}}\right|
\implies\displaystyle\frac{|x-4|}8\lim_{n\to\infty}\frac{2n-1}{n+1}=\frac{|x-4|}4
\implies |x-4|

so that the ROC is 4.

- - -

10. Without going into much detail, you should have as your Taylor polynomial

\sin x\approx T_4(x)=\dfrac12+\dfrac{\sqrt3}2\left(x-\dfrac\pi6\right)-\dfrac14\left(x-\dfrac\pi6\right)^2-\dfrac1{4\sqrt3}\left(x-\dfrac\pi6\right)^3+\dfrac1{48}\left(x-\dfrac\pi6\right)^4

Taylor's inequality then asserts that the error of approximation on the interval 0\le x\le\dfrac\pi3 is given by

|\sin x-T_4(x)|=|R_4(x)|\le\dfrac{M\left|x-\frac\pi6\right|^5}{5!}

where M satisfies |f^{(5)}(x)|\le M on the interval.

We know that (\sin x)^{(5)}=\cos x is bounded between -1 and 1, so we know M=1 will suffice. Over the given interval, we have \left|x-\dfrac\pi6\right|\le\dfrac\pi6, so the remainder will be bounded above by

|R_4(x)|\le\dfrac{1\times\left(\frac\pi6\right)^5}{5!}=\dfrac{\pi^5}{933120}\approx0.000328

which is to say, over the interval 0\le x\le\dfrac\pi3, the fourth degree Taylor polynomial approximates the value of \sin x near x=\dfrac\pi6 to within 0.000328.
You might be interested in
Please help (image below) Starting from the same place, Anaad walks due west and Cala walks due east.
lesya692 [45]
Hey is 4 to get a good job of you getting your in the time you can join your in the time you can join
8 0
4 years ago
Gene's art teacher mixes 9 pints of yellow paint with 6 pounds of blue paint to create green paint gina mixes for pace of yellow
Shalnov [3]
Mrfhnjws 8 to begin with

4 0
4 years ago
How much money would i make in a year working 5 days a week and making 80 dollars a day
Zanzabum

Answer:

$20,857.14

Step-by-step explanation:

4 0
3 years ago
HELP PLZZZ THIS IS A MAJOR GRADE :((( MARKING BRAINLIEST
Lorico [155]

Answer:

5.09

Step-by-step explanation:

your welcome...........

3 0
3 years ago
Find length of diagonal of a cube if its side is of length 5cm​
Irina18 [472]

Answer:

8.66cm

Step-by-step explanation:

google

8 0
3 years ago
Other questions:
  • .Let F(x,y)= (y^2+1i + (2xy-2)j. Compute single integral with subscript of C F * dr where
    12·1 answer
  • Jason Aldeen bought a house for $275,000. He made a down payment of 15%. The interest rate is 4.2% for 15 years.
    10·1 answer
  • How many tens are there in 520?<br>​
    5·2 answers
  • Q2. Express the first quantity as a percentage of the second quantity.
    12·1 answer
  • Which one was it? I’ve been trying for a while
    15·2 answers
  • Simplify <br> -5(3(8-6)+7)
    11·2 answers
  • If the area of a circle is 31.36 pi, then what is its radius?
    8·1 answer
  • hospital pays $9 for each set of scrubs plus a delivery fee of $13 per order the total cost for the scrub order was $463. how ma
    14·2 answers
  • What is the value of 3-(-2)?​
    8·2 answers
  • Genevieve is in charge of creating a five-digit code to lock and unlock a secure cabinet. she can use any digit from 0 through 9
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!