1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
3 years ago
15

A gazebo is located in the center of a large, circular lawn with a diameter f 300ft. Straight paths extend from the gazebo to a

sidewalk around the lawn. if two of the paths form a 45degree angle, how far would you have to travel around the sidewalk to get from one path to the other? Round to the nearest foot if necessary. a. 236 ft b. 59ft c. 110ft d. 118ft
Mathematics
1 answer:
garri49 [273]3 years ago
5 0
The distance all the way around the sidewalk (the circumference) is 300 pi. 45 degrees is 1/8 of 360 degrees, so the two paths cut 1/8 of the circumference. That's 37.5 pi = 117.81 ft. The nearest whole foot is 118 ft.
You might be interested in
What is the classification of the triangle by its angles and by its sides?
weeeeeb [17]

Answer:

Step-by-step explanation:

quadrilateral triangle

3 0
3 years ago
Read 2 more answers
What is the product of (x-3y)(2x+3y)
melamori03 [73]
<span>The answer to this question is 4<span>x2</span></span><span><span>−9</span><span>y<span>2</span></span></span>
7 0
4 years ago
Perform all indicated operations, and express each answer in simplest form with positive exponents. Assume that all variables re
Mademuasel [1]

Answer:

a. -( 4\sqrt{3} + 3)

b.  x^{\frac{-5}{12}} y^{\frac{31}{24}}

c.  \frac{8\sqrt{x} + 8\sqrt{5}}{x - 5}

d. 45 + 12\sqrt{5y} + 4 y

e. -(\frac{3}{5x})^{\frac{1}{2}}

Step-by-step explanation:

a.

\sqrt{12} - \sqrt{108} - \sqrt[3]{27}

Expand each expression

\sqrt{4*3} - \sqrt{36 * 3} - \sqrt[3]{3*3*3}

Split the first two surds

\sqrt{4}*\sqrt{3} - \sqrt{36} * \sqrt{3} - \sqrt[3]{3*3*3}

2*\sqrt{3} - 6 * \sqrt{3} - \sqrt[3]{3*3*3}

Apply law of indices

2*\sqrt{3} - 6 * \sqrt{3} - \sqrt[3]{3^3}

Apply law of indices

2*\sqrt{3} - 6 * \sqrt{3} - 3^{3*\frac{1}{3}}

2*\sqrt{3} - 6 * \sqrt{3} - 3^{1}

2*\sqrt{3} - 6 * \sqrt{3} - 3

2\sqrt{3} - 6\sqrt{3} - 3

- 4\sqrt{3} - 3

Factorize

-( 4\sqrt{3} + 3)

<em>The expression cannot be further simplified</em>

b.

(\frac{x^{\frac{-3}{4}}y^{\frac{2}{3}}}{x^{\frac{-1}{3}}y^{\frac{-5}{8}}})

Expand the expression

(\frac{x^{\frac{-3}{4}} * y^{\frac{2}{3}}}{x^{\frac{-1}{3}} * y^{\frac{-5}{8}}})

Apply the following law of indices;

\frac{a^m}{a^n} = a^{m-n}

x^{{\frac{-3}{4} - \frac{-1}{3}}} * y^{{\frac{2}{3} - \frac{-5}{8}}}}

x^{{\frac{-3}{4} + \frac{1}{3}}} * y^{{\frac{2}{3} + \frac{5}{8}}}}

Add the exponents

x^{\frac{-9+4}{12}} * y^{{\frac{16+15}{24}}}}

x^{\frac{-5}{12}} * y^{{\frac{31}{24}}}}

x^{\frac{-5}{12}} y^{\frac{31}{24}}

<em>The expression cannot be further simplified</em>

c.

\frac{8}{\sqrt{x} - \sqrt{5}}

Rationalize the denominator

\frac{8}{\sqrt{x} - \sqrt{5}} * \frac{\sqrt{x} + \sqrt{5}}{\sqrt{x} + \sqrt{5}}

\frac{8(\sqrt{x} + \sqrt{5})}{(\sqrt{x} - \sqrt{5})(\sqrt{x} + \sqrt{5})}

Simplify the numerator

\frac{8\sqrt{x} + 8\sqrt{5}}{(\sqrt{x} - \sqrt{5})(\sqrt{x} + \sqrt{5})}

Simplify the denominator by difference of two squares

\frac{8\sqrt{x} + 8\sqrt{5}}{\sqrt{x}^2 - \sqrt{5}^2}

\frac{8\sqrt{x} + 8\sqrt{5}}{x - 5}

<em>The expression cannot be further simplified</em>

<em></em>

d.

(3\sqrt{5} + 2\sqrt{y})^2

Expand the expression

(3\sqrt{5} + 2\sqrt{y})(3\sqrt{5} + 2\sqrt{y})

Open the bracket

3\sqrt{5} (3\sqrt{5} + 2\sqrt{y})+ 2\sqrt{y}(3\sqrt{5} + 2\sqrt{y})

Open both brackets

3\sqrt{5} *3\sqrt{5} + 3\sqrt{5}*2\sqrt{y}+ 2\sqrt{y}*3\sqrt{5} + 2\sqrt{y}*2\sqrt{y}

(3\sqrt{5} *3\sqrt{5}) + (3\sqrt{5}*2\sqrt{y})+ (2\sqrt{y}*3\sqrt{5}) + (2\sqrt{y}*2\sqrt{y})

Multiply each expression in the bracket

(3*3\sqrt{5*5}) + (3*2\sqrt{5*y})+ (2*3\sqrt{5*y}) + (2*2\sqrt{y*y})

(9\sqrt{25}) + (6\sqrt{5y})+ (6\sqrt{5y}) + (4\sqrt{y^2})

Solve like terms

(9\sqrt{25}) + (12\sqrt{5y}) + (4\sqrt{y^2})

Take square root of 25 and y²

(9 * 5) + (12\sqrt{5y}) + (4 * y)

(45) + (12\sqrt{5y}) + (4 y)

Remove the brackets

45 + 12\sqrt{5y} + 4 y

<em>The expression cannot be further simplified</em>

e.

-\sqrt{\frac{3}{5x}}

This expression can not be simplified; However, it can be rewritten, by applying law of indices as

-(\frac{3}{5x})^{\frac{1}{2}}

4 0
4 years ago
PLZ HELP WILL GIVE 100 PNTS AND BRAINLIST!! ASAP IM BEING TIMED
Ivenika [448]

Answer: The similarities are that the price on both is the same. The differences are that Susan likes to take her math the long way to make it more precise.

Linda, on the other hand, she has to subtract two numbers to find the cost of the cherries per pound.

Step-by-step explanation:

I hope this helps!❤️

5 0
3 years ago
Ian wanna get whooped help
tekilochka [14]

Answer:

A.

Step-by-step explanation:

I am not 100% sure but I hope this helps you.

8 0
3 years ago
Read 2 more answers
Other questions:
  • How are improper frations and mixed number different
    13·2 answers
  • What is the missing angel measures for the remaining three angel
    14·2 answers
  • Please help meeeee<br><br><br> what is the slope of the line below?
    14·2 answers
  • Find the midpoint of the segment between the points (15,−9) and (−2,−18) A. (172,92) B. (13,−27) C. (132,−272) D. (−13,27)
    12·1 answer
  • 2/5 of 450 millimeters
    12·1 answer
  • Darren is painting a wooden block as part of his art project. The block is a rectangular prism that is 12 cm long by 9 cm wide b
    6·1 answer
  • True or False percent markup on selling price can be converted to percent markip on cost by formula?
    9·1 answer
  • Please help <br><br> 1x + 3 = y<br> 3x + 2 = y
    13·1 answer
  • Round 689 to the nearest thousand
    10·1 answer
  • Select the correct answer.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!