L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=6The arclength of a parametric curve can be found using the formula:
L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=
6
√
3
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Use two points from the graph to check if they are constant. In this case let’s use (0,50) & (2,58)
To find slope you have to do the following.
y2-y1 / x2-x1
Plug in the values, 58-50/2-0
This gives you 4.
When you use two other points, in this case (10,90) (20,130) you get a slope of 4.
This means the slope is 4.
We are trying to get an equation of y=mx+b.
We have slope already which is 4. So now we plug in y=4x + b
Now we need to find b. There is an equation to solve for b. Which is b=y1-m(x1)
But b is the y-intercept so there is already a B which is 50
So the table IS a linear equation and the equation is y=4x+50.
Lot 4 had the greatest percentage of blue cars.
The answer is 38, because if you take away the 15 he bought afterwards (34-15) you get 19, and then since he sold half his collection you would double that (19×2) and that's 38.