Answer:
The inequality 2.50x>40.00 represents the number of lunches needed to be purchased for the monthly lunch pass to be a better deal.
Step-by-step explanation:
Given that:
Cost of each lunch = $2.50
Cost of monthly lunch pass = $40.00
Number of lunches = x
For making the monthly pass a better deal, the cost of lunches should be greater than the cost of monthly lunches, therefore
Cost of lunch * Number of lunches > Cost of monthly lunch pass
2.50x > 40.00
Hence,
The inequality 2.50x>40.00 represents the number of lunches needed to be purchased for the monthly lunch pass to be a better deal.
Answer:
The sketch is carried out and the probabilities are calculated.
Next time, please share the answer choices.
Starting from scratch, it's possible to find the roots:
<span>4x^2=x^3+2x should be rearranged in descending order by powers of x:
x^3 - 4x^2 + 2x = 0. Factoring out x: </span>x(x^2 - 4x + 2) = 0
Clearly, one root is 0. We must now find the roots of (x^2 - 4x + 2):
Here we could learn a lot by graphing. The graph of y = x^2 - 4x + 2 never touches the x-axis, which tells us that (x^2 - 4x + 2) = 0 has no real roots other than x=0. You could also apply the quadratic formula here; if you do, you'll find that the discriminant is negative, meaning that you have two complex, unequal roots.
Let x be the 1st odd number, and x+2 the second odd consecutive number:
(x)(x + 2) = 6[((x) + (x+2)] -1
x² + 2x = 6(2x + 2) - 1
x² + 2x = 12x +12 - 1
And x² - 10x - 11=0
Solve this quadratic expression:
x' = [+10 +√(10²- 4.(1)(-11)]/2 and x" = [+10 -√(10²- 4.(1)(-11)]/2
x' = [10 + √144]/2 and x" = [10 - √64]/2
x' = (10+12)/2 and x" = (10-12)/2
x = 11 and x = -1
We have 2 solutions that satisfy the problem:
1st for x = 11, the numbers at 11 and 13
2nd for x = - 1 , the numbers are -1 and +1
If you plug each one in the original equation :(x)(x + 2) = 6[((x) + (x+2)] -1
you will find that both generates an equlity
Answer:
Line TX or XT
Step-by-step explanation:
Planes always intersect in a line.