Tan (Ф/2)=⁺₋√[(1-cosФ)/(1+cosФ)]
if π<Ф<3π/2;
then, Where is Ф/2??
π/2<Ф/2<3π/4; therefore Ф/2 is in the second quadrant; then tan (Ф/2) will have a negative value.
tan(Ф/2)=-√[(1-cosФ)/(1+cosФ)]
Now, we have to find the value of cos Ф.
tan (Ф)=4/3
1+tan²Ф=sec²Ф
1+(4/3)²=sec²Ф
sec²Ф=1+16/9
sec²Ф=(9+16)/9
sec²Ф=25/9
sec Ф=-√(25/9) (sec²Ф will have a negative value, because Ф is in the sec Ф=-5/3 third quadrant).
cos Ф=1/sec Ф
cos Ф=1/(-5/3)
cos Ф=-3/5
Therefore:
tan(Ф/2)=-√[(1-cosФ)/(1+cosФ)]
tan(Ф/2)=-√[(1+3/5)/(1-3/5)]
tan(Ф/2)=-√[(8/5)/(2/5)]
tan(Ф/2)=-√4
tan(Ф/2)=-2
Answer: tan (Ф/2)=-2; when tan (Ф)=4/3
Answer:
The parametrization, of the given curve is 
Step-by-step explanation:
From the question we are given the function

At y= 5


Converting the above to it polar equation we have

Answer:

Step-by-step explanation:
To find the inverse of a function, simply 'switch' the x and y's and solve for y.
becomes
. Now, solving for y, we get
.
hope this helped! :)
Answer:
30
Step-by-step explanation:
Each z-score = 1 standard deviation from the mean, so 18 + (6 x 2) = 30