Dividing the given polynomial by (x -6) gives quotient Q(x) and remainder 5 then for Q(-6) = 3 , P(-6) = -31and P(6) =5.
As given in the question,
P(x) be the given polynomial
Dividing P(x) by divisor (x-6) we get,
Quotient = Q(x)
Remainder = 5
Relation between polynomial, divisor, quotient and remainder is given by :
P(x) = Q(x)(x-6) + 5 __(1)
Given Q(-6) = 3
Put x =-6 we get,
P(-6) = Q(-6)(-6-6) +5
⇒ P(-6) = 3(-12) +5
⇒ P(-6) =-36 +5
⇒ P(-6) = -31
Now x =6 in (1),
P(6) = Q(6)(6-6) +5
⇒ P(6) = Q(6)(0) +5
⇒ P(6) = 5
Therefore, dividing the given polynomial by (x -6) gives quotient Q(x) and remainder 5 then for Q(-6) = 3 , P(-6) = -31and P(6) =5.
The complete question is:
Dividing the polynomial P(x) by x - 6 yields a quotient Q(x) and a remainder of 5. If Q(-6) = 3, find P(-6) and P(6).
Learn more about polynomial here
brainly.com/question/11536910
#SPJ1
Answer with Step-by-step explanation:
We are given that

We have to find T,N and B at the given point t > (1,
,1)



Now, substitute t=1













we are given

now, we can compare it with

we can find b
we get

now, we are given
How would the graph change if the b value in the equation is decreased but remains greater than 1
Let's take
b=1.8

b=1.6

b=1.4

b=1.2

now, we can draw graph
now, we will verify each options
option-A:
we know that all y-value will begin at y=0
because horizontal asymptote is y=0
so, this is FALSE
option-B:
we can see that
curve is moving upward when b decreases for negative value of x
but it is increasing slowly for negative values of x
so, this is FALSE
option-C:
we can see that
curve is moving upward when b decreases for negative value of x
but it is increasing slowly for negative values of x
so, this is TRUE
option-D:
we know that curves are increasing
so, the value of y will keep increasing as x increases
so, this is TRUE
option-E:
we can see that
curve is moving upward when b decreases for negative value of x
but it is increasing slowly for negative values of x
so, this is FALSE
Answer: A
Step-by-step explanation: