<span>..has evaporated from all the water sources around the world (streams, rivers, ponds, seas, oceans etc).
It is am established fact that the quantity of water present on the Earth has remained constant from the beginning of time. At any given point in time it may exist in one of its three forms i.e.ice, water or water vapor but there is no variation in its total quantity (hydrological cycle).</span>
D= m/v
solve this formula to find v
by solving we get,
v = m/D
v = 13/19.3
v = 0.67 cm^3
A small amount of fat is an essential part of a healthy, balanced diet. Fat is a source of essential fatty acids, which the body can't make itself. Fat helps the body absorb vitamins A, D and E. These vitamins are fat-soluble, meaning they can only be absorbed with the help of fats.
-Jen
Answer:
The C. elegans embryo is a powerful model system for studying the mechanics of metazoan cell division. Its primary advantage is that the architecture of the syncytial gonad makes it possible to use RNAi to generate oocytes whose cytoplasm is reproducibly (typically >95%) depleted of targeted essential gene products via a process that does not depend exclusively on intrinsic protein turnover. The depleted oocytes can then be analyzed as they attempt their first mitotic division following fertilization. Here we outline the characteristics that contribute to the usefulness of the C. elegans embryo for cell division studies. We provide a timeline for the first embryonic mitosis and highlight some of its key features. We also summarize some of the recent discoveries made using this system, particularly in the areas of nuclear envelope assembly/ dissassembly, centrosome dynamics, formation of the mitotic spindle, kinetochore assembly, chromosome segregation, and cytokinesis.
1. The C. elegans embryo as a system to study cell division
The C. elegans embryo is a powerful model system for studying the mechanics of metazoan cell division. Its primary advantage is that the syncytial gonad makes it possible to use RNA interference (RNAi) to generate oocytes whose cytoplasm is reproducibly (>95%) depleted of targeted essential gene products. Introduction of dsRNA rapidly catalyzes the destruction of the corresponding mRNA in many different systems. However, depletion of pre-existing protein is generally a slow process that depends on the half-life of the targeted protein. In contrast, in the C. elegans gonad, the protein present when the dsRNA is introduced is depleted by the continual packaging of maternal cytoplasm into oocytes (Figure 1). Since depletion relies on the rate of embryo production instead of protein half-life, the kinetics tend to be similar for different targets. By 36-48 hours after introduction of the dsRNA, newly formed oocytes are typically >95% depleted of the target protein.
Explanation:
Answer:
The cell interior would experience higher than normal Na+ concentrations and lower than normal K+ concentrations.
Explanation:
Na+/K+ ATPase exists in two forms: Its phosphorylated form has a high affinity for K+ and low affinity for Na+. ATP hydrolysis and phosphorylation of the Na+/K+ pump favor the release of Na+ outside the cell and binding of K+ ions from the outside of the cell. Dephosphorylation of the pump increases its affinity for Na+ and reduces that for K+ ions resulting in the release of K+ ions inside the cells and binding to the Na+ from the cells.
The presence of ATP analog would not allow the pump to obtain its phosphorylated form. Therefore, Na+ ions would not be released outside the cells. This would increase the Na+ concentration inside the cell above the normal. Similarly, the pump would not be able to pick the K+ from the outside of the cell resulting in reduced cellular K+ concentration below the normal range.