Answer:
1,145,375 cm³
Step-by-step explanation:
Like with an earlier question you had, there is a chunk missing. If that chunk was filled in, this would be a 205 * 70 * 85 rectangular prism.
205 * 70 * 85
17,425 * 70
1,219,750
The cut out chunk is a 25 * 70 * 85 triangular prism.
1/2 (25 * 70 * 85)
1/2(2,125 * 70)
1/2(148,750)
74,375
Now that we know what the cut-out chunk is, subtract that from the first value we got.
1,219,750 -74,375
1,145,375 cm³
The volume of the Canadian Post mailbox is 1,145,375 cm³.
Answer:
<em>S</em><em>o</em><em> </em><em>1</em><em>)</em><em> </em><em> </em><em>x</em><em>²</em><em>-</em><em>2</em><em>x</em><em>-</em><em>8</em>
<em>=</em><em> </em><em> </em><em> </em><em> </em><em> </em> x(x-2-8/x)
<em>2</em><em>)</em><em> </em><em> </em><em> </em><em>y</em><em>²</em><em>-</em><em>1</em><em>3</em><em>y</em><em>+</em><em>4</em><em>2</em>
<em> </em><em>=</em><em> </em><em> </em><em> </em>y(y-13+42/y)
<em>3</em><em>)</em><em> </em><em>m</em><em>²</em><em>-</em><em>6</em><em>m</em><em>-</em><em>7</em>
<em> </em><em>=</em><em> </em><em>m</em><em>(</em><em>m</em><em>-</em><em>6</em><em>-</em><em>7</em><em>/</em><em>m</em><em>)</em>
<em>H</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>t</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em>s</em>
The Answer is $9.00 because if you just add 4.50 to 4.50 it is $9:00.
Answer:
- (6-u)/(2+u)
- 8/(u+2) -1
- -u/(u+2) +6/(u+2)
Step-by-step explanation:
There are a few ways you can write the equivalent of this.
1) Distribute the minus sign. The starting numerator is -(u-6). After you distribute the minus sign, you get -u+6. You can leave it like that, so that your equivalent form is ...
(-u+6)/(u+2)
Or, you can rearrange the terms so the leading coefficient is positive:
(6 -u)/(u +2)
__
2) You can perform the division and express the result as a quotient and a remainder. Once again, you can choose to make the leading coefficient positive or not.
-(u -6)/(u +2) = (-(u +2)-8)/(u +2) = -(u+2)/(u+2) +8/(u+2) = -1 + 8/(u+2)
or
8/(u+2) -1
Of course, anywhere along the chain of equal signs the expressions are equivalent.
__
3) You can separate the numerator terms, expressing each over the denominator:
(-u +6)/(u+2) = -u/(u+2) +6/(u+2)
__
4) You can also multiply numerator and denominator by some constant, say 3:
-(3u -18)/(3u +6)
You could do the same thing with a variable, as long as you restrict the variable to be non-zero. Or, you could use a non-zero expression, such as 1+x^2:
(1+x^2)(6 -u)/((1+x^2)(u+2))