Let us model this problem with a polynomial function.
Let x = day number (1,2,3,4, ...)
Let y = number of creatures colled on day x.
Because we have 5 data points, we shall use a 4th order polynomial of the form
y = a₁x⁴ + a₂x³ + a₃x² + a₄x + a₅
Substitute x=1,2, ..., 5 into y(x) to obtain the matrix equation
| 1 1 1 1 1 | | a₁ | | 42 |
| 2⁴ 2³ 2² 2¹ 2⁰ | | a₂ | | 26 |
| 3⁴ 3³ 3² 3¹ 3⁰ | | a₃ | = | 61 |
| 4⁴ 4³ 4² 4¹ 4⁰ | | a₄ | | 65 |
| 5⁴ 5³ 5² 5¹ 5⁰ | | a₅ | | 56 |
When this matrix equation is solved in the calculator, we obtain
a₁ = 4.1667
a₂ = -55.3333
a₃ = 253.3333
a₄ = -451.1667
a₅ = 291.0000
Test the solution.
y(1) = 42
y(2) = 26
y(3) = 61
y(4) = 65
y(5) = 56
The average for 5 days is (42+26+61+65+56)/5 = 50.
If Kathy collected 53 creatures instead of 56 on day 5, the average becomes
(42+26+61+65+53)/5 = 49.4.
Now predict values for days 5,7,8.
y(6) = 152
y(7) = 571
y(8) = 1631
Tnemos el sisema de ecuaciones:

Podemos resolverlo por eliminación sumando ambas ecuaciones y eliminando y. Asi podemos resolver para x:

Ahora podemos resolver para y con cualquiera de las dos ecuaciones:

Respuesta: x=-3, y=0
The number would stay the same because, for example, 6 - 0 can't be 0 so it would be 6.
Answer:
a. 2.6(0.12)
Step-by-step explanation:
Check all of the other answers: b. c. and d. are variations of equations that equal to 2.912. 2.6(0.12) is not the correct equation because it equals to 0.312. The kitten‘s weight must increase, so that is the incorrect equation.
Answer:
Step-by-step explanation: