Answer: 0.9375 g
Explanation:
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of
solution = 0.75 M
Volume of
solution = 25.0 mL = 0.025 L
Putting values in equation 1, we get:
According to stoichiometry :
2 moles of
require = 1 mole of
Thus 0.01875 moles of
will require=
of
Mass of
Thus 0.9375 g of
is required to react with 25.0 ml of 0.75 M HCl
In buffer solution there is an equilibrium between the acid HA and its conjugate base A⁻: HA(aq) ⇌ H⁺(aq) + A⁻(aq).
When acid (H⁺ ions) is added to the buffer solution, the equilibrium is shifted to the left, because conjugate base (A⁻) reacts with hydrogen cations from added acid, according to Le Chatelier's principle: H⁺(aq) + A⁻(aq) ⇄ HA(aq). So, the conjugate base (A⁻) consumes some hydrogen cations and pH is not decreasing (less H⁺ ions, higher pH of solution).
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable
Answer:
The density of the metal is 3.457 g/cm³.
Explanation:
Given,
mass of metal = 121 grams
Volume = 35 cm³.
Density = ?
Density of the metal can be found by using the formula
Density = Mass/Volume
Substituting the values,
Density = 121/35 = 3.457 g/cm³.
I know this isn't the answer but here's an English translation
<span>The saturated vapor pressure of pure water at 20 ° C is 18 mmHg. If at the same temperature as much as 120 grams of x-substance dissolved in 990 grams of water, the vapor pressure of the solution becomes 17.37 mmHg, calculate the relative molecular mass of the substance x?</span>