The emf is induced in the wire will be 1.56 ×10 ⁻³ V. The induced emf is the product of the magnetic field,velocity and length of the wire.
<h3>What is induced emf?</h3>
Emf is the production of a potential difference in a coil as a result of changes in the magnetic flux passing through it.
When the flux coupling with a conductor or coil changes, electromotive Force, or EMF, is said to be induced.
The given data in the problem is;
B is the magnitude of the magnetic field,= 5.0 ×10⁻⁵ T
V(velocity)=125 M/SEC
L(length)=25 cm=0.25 m
The maximum emf is found as;
E=VBLsin90°
E=125 × 5.0 × 10⁻⁵ ×0.25
E=1.56 ×10 ⁻³ V
Hence, the emf is induced in the wire will be 1.56 ×10 ⁻³ V
To learn more about the induced emf, refer to the link;
brainly.com/question/16764848
#SPJ1
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
Answer:
Technically everything has somewhat of a magnetic field. I guess
Since there are no external forces, including friction, act on the flatcar. after the sack rests on the flatcar, we would assume that momentum is conserved. This means that
total momentum of car before collision = total momentum of car after collision.
Recall,
momentum = mass x velocity
From the information given,
mass of car before collision = 2000
velocity of car before collision = 3
Thus,
total momentum of car before collision = 2000 x 3 = 6000
Also,
mass of sack = 500
mass of car and sack after collision = 500 + 2000 = 2500
velocity after collision = v
momentum after collision = 2500 x v = 2500v
Since momentum is conserved, then
6000 = 2500v
v = 6000/2500
v = 2.4
the speed of the flatcar is 2.4 m/s
Answer:
TRUE - In any collision between two objects, the colliding objects exert equal and opposite force upon each other. This is simply Newton's law of action-reaction.