To answer this question, an assumption must be made, that Eva spends 8 hours a day working. If this is the case, then Eva will complete jobs w, x, and v on day one, for a total of six hours. Since the next job (y) requires 4 hours, she will spend two hours working that day, leaving 2 more hours to go on that job. The next day she will spend 2 hours finishing job y, completing it, and finish the longest job z (hours) that day. This means she had 4 jobs on day one, and 2 jobs on day 2 for and average of 3 jobs per day.
This answer assumes an 8 hour work day, and that Eva can start a job she cannot finish that day.
Answer:
The pairs ( 1 , 2 ) and ( 2 , 1 ) are not equal because their respective elements are not equal.
Step-by-step explanation:
The pair of elements which are in specific order is called an ordered pair. The pair ( 1 , 2 ) is not same as the pair ( 2 , 1 ). In the pair ( 1 , 2 ) 1 is in the first position and 2 is in the second position. In the pair ( 2 , 1 ), 2 is in the first position and 1 is in the second position.
Two ordered pairs ( a , b ) and (c , d ) are said to be equal if a = c and b = d. We write ( a , b ) = ( c , d ).
Hope I helped!
Best regards!!
Answer:
Step-by-step explanation:
We would apply the simple interest formula which is expressed as
I = PRT/100
Where
P = principal or amount borrowed
T = time in years
R = interest rate on amount borrowed.
I = interest paid.
From the given information,
Principal = $3000
T = 3 months = 3/12 = 0.25 years
R = 6 1/2 % = 6.5%
Therefore,
a) the amount that the woman pay for the use of the money is I
I = (3000 × 6.5 × 0.25)/100 = 48.75
b) The amount she repaid to the bank on the due date of the note would be
Principal + interest
= 3000 + 48.75 = $3048.75
Answer:
0.6 °C/min
Step-by-step explanation:
The relationship between rates and movement is ...
time = distance/speed
Here, the "distance" is measured in °C, and the "speed" is the rate of change of temperature.
For the first half of the heating, the time required is ...
(50°C -0°C)/(1.5 °C/min) = 50/(3/2) min = 100/3 min
For the second half of the heating, the time required is ...
(100°C -50°C)/(4/10 °C/min) = 50/(4/10) = 125 min
Then the total time is ...
((100/3) +125) min = (475/3) min
And the average rate of temperature increase is ...
total temperature change / total time
= (100°C -0°C)/(475/3 min) = 300/475 °C/min = 12/19 °C/min ≈ 0.6 °C/min