2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
Explanation:
To balance the chemical equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
Bellow we have the balanced chemical equation of the complete combustion of C₃H₇OH:
C₃H₇OH (l) + (9/2) O₂ (g) → 3 CO₂ (g) + 4 H₂O (g)
to have integer coefficients we multiply the reaction with 2:
2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
where:
(l) - liquid
(g) - gaseous
Learn more about:
combustion reaction
brainly.com/question/9425444
balancing chemical equations
brainly.com/question/13941483
#learnwithBrainly
Explanation:
A reaction quotient is defined as the ratio of concentration of products over reactants raised to the power of their stoichiometric coefficients.
A reaction quotient is denoted by the symbol Q.
For example, 
The reaction quotient for this reaction is as follows.
Q = ![\frac{[Fe^{2+}]^{2}[Zn^{2+}]}{[Fe^{3+}]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BFe%5E%7B2%2B%7D%5D%5E%7B2%7D%5BZn%5E%7B2%2B%7D%5D%7D%7B%5BFe%5E%7B3%2B%7D%5D%5E%7B2%7D%7D)
[Zn] will be equal to 1 as it is present in solid state. Therefore, we don't need to write it in the reaction quotient expression.
<u>Answer:</u> The amount of heat released is 56 MJ.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of
= 12 kg = 12000 g (Conversion factor: 1 kg = 1000 g)
Molar mass of
= 30 g/mol
Putting values in above equation, we get:

The chemical reaction for hydrogenation of ethene follows the equation:

By Stoichiometry of the reaction:
When 1 mole of ethane releases 140 kJ of heat.
So, 400 moles of ethane will release =
of heat.
Converting this into Mega joules, using the conversion factor:
1 MJ = 1000 kJ
So, 
Hence, the amount of heat released is 56 MJ.
Answer:
Cell is defined as the smallest unit or basic unit of life.