Answer:
The correct answer is option B
Explanation:

Given values,
Molarity of 
Volume of solution, 
Molecular weight of 
Substituting this values in Molarity formula, we get

This problem is providing information about the initial mass of mercury (II) oxide (10.00 g) which is able to produce liquid mercury (8.00 g) and gaseous oxygen and asks for the resulting mass of the latter, which turns out to be 0.65 g after doing the corresponding calculations.
Initially, it is given a mass of 10.00 g of the oxide and 1.35 g are left which means that the following mass is consumed:

Now, since 8.00 grams of liquid mercury are collected, it is possible to calculate the grams of oxygen that were produced, by considering the law of conservation of mass, which states that the mass of the products equal that of the reactants as it is nor destroyed nor created. In such a way, the mass of oxygen turns out to be:

Learn more:
Answer:i don't rlly get the question but this is what i found on the internet :/
Explanation:
When the temperature is increased, the position of equilibrium moves in the endothermic direction to reduce the temperature. ... This means that as the temperature is increased, the position of equilibrium moves to the left, and the yield of ammonia decreases.