Answer:
second force = 32.784
Magnitude =
θ = -90°
Explanation:
a)
Fnet = ma
F1 + F2 = ma
20N + F2 = 2(12 × cos30° + 12 ×sin30°)
F2 = 2 × 12 ( sin 30° + cos 30°)
= 24 × ( 1 + √3 )÷ 2
=12 (1 +√3 )
= 32.784
b)

= 
= 
=
c)
θ = 30° + 180°
θ = 210°
210° - 300°
θ = -90°
Answer:
a) v= 2.1 m/s
b) ω = 0.807 rad/s
Explanation
Conceptual analysis :
The dog and the merry-go- round describes a circular motion, then, the following formulas apply :
Formula (1)
v = ω *r Formula (2)
Where:
: Centripetal acceleration(m/s²)
v: linear speed or tangential (m/s)
r : radius of the circle (m)
ω : angular speed ( rad/s)
Data
r= 2.6 m
= 1.7 m/s²
Problem develpment
a) We replace data in the formula 1 to calculate the dog's linear speed(v):


v= 2.1 m/s
b)We replace data in the formula 2 to calculate the angular speed of the merry-go- round (ω).
v = ω *r
2.1 = ω *2.6
ω = 2.1/2.6
ω = 0.807 rad/s
Answer:
Momentum is conserved.
All of the others are not conserved because of heat loss caused by deformation, etc.
Answer:
if there are no options then i would say the Atlantic oceans
if there are options let me know
Answer:
20 K
Explanation:
It is given that,
The change in temperature is 20 C.
We need to find the change in thermodynamic temperature.
If teperauture T₁ = 0° C = 0+273 = 273 K
T₂ = 20° C = 20 + 273 = 293 K
The change in temperature,

So, the change in temperature of 20°C is equivalent to 20 K.