Answer
given,
mass of the piano = 170 kg
angle of the inclination = 20°
moves with constant velocity hence acceleration = 0 m/s²
neglecting friction
so, force required to pull the piano
F = m g sin θ
F = 170 × 9.81 × sin 20°
F = 570.39 N
so, force required by the man to push the piano is F = 570.39 N
Answer:
The value is 
Explanation:
From the question we are told that
The initial pressure is
The initial temperature is ![T_1 = 50 \ F = (50 - 32) * [\frac{5}{9} ] + 273 = 283 \ K](https://tex.z-dn.net/?f=T_1%20%3D%20%2050%20%5C%20F%20%3D%20%2850%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D%20283%20%20%5C%20%20K)
The final temperature is ![T_2 = 320 \ F = (320 - 32) * [\frac{5}{9} ] + 273 =433 \ K](https://tex.z-dn.net/?f=T_2%20%3D%20%20320%20%5C%20F%20%3D%20%28320%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D433%20%20%5C%20%20K)
Generally the equation for adiabatic process is mathematically represented as

=> 
Generally for a monoatomic gas 
So
![14 * 283^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} } =P_2 * 433^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} }](https://tex.z-dn.net/?f=14%20%2A%20283%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D%20%3DP_2%20%2A%20433%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D)
=> 
=> 
This statement is true. The greater the mass is in an object, it is indeed the higher resistance to a change in movement the object will have. That only mean that the mass of an object and its resistance to change of movement is directly proportional.
Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s