The probability that she gets audited no more than 2 times is 0.896482...
As, a pair of dice are rolling here, so the number of total possible outcome = (6×6) = 36
For Sum = 7 , the favorable outcomes are: (1,6) (2,5) (3,4) (4,3) (5,2) and (6,1)
For Sum = 11 , the favorable outcomes are: (5,6) and (6,5)
For Sum = 12 , the favorable outcome is: (6,6)
Probability = (Number of favorable outcomes)÷(Number of total outcomes)
So,
![P(11) = \frac{2}{36} = \frac{1}{18}](https://tex.z-dn.net/?f=%20P%2811%29%20%3D%20%5Cfrac%7B2%7D%7B36%7D%20%3D%20%5Cfrac%7B1%7D%7B18%7D%20%20)
![P(12) = \frac{1}{36}](https://tex.z-dn.net/?f=%20P%2812%29%20%3D%20%5Cfrac%7B1%7D%7B36%7D%20%20)
P( 7 or 11 or 12) = ![\frac{1}{6}+\frac{1}{18}+\frac{1}{36} = \frac{6+2+1}{36}=\frac{9}{36} = \frac{1}{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B18%7D%2B%5Cfrac%7B1%7D%7B36%7D%20%3D%20%5Cfrac%7B6%2B2%2B1%7D%7B36%7D%3D%5Cfrac%7B9%7D%7B36%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%20%20%20%20%20%20)
Here the total number of trials = 5 and the probability of getting audited = ![\frac{1}{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B4%7D%20%20)
According the binomial distribution formula:
P(X) = (ⁿCₓ )(P)ˣ (1-P)ⁿ⁻ˣ
where P(X) is the probability of x successes out of n trials
Here, n= 5 and P = 1/4 and we need to find the probability of getting audited no more than 2 times. This means she can gets audited 0, 1 or 2 times.
So,
![P(X=0)+P(X=1) +P(X=2)\\\\= [^5C^0 (\frac{1}{4})^0 (1-\frac{1}{4})^5^-^0 ]+[^5C^1 (\frac{1}{4})^1 (\frac{3}{4})^5^-^1]+[^5C^2 (\frac{1}{4})^2 (\frac{3}{4})^5^-^2]\\\\= (\frac{3}{4})^5+ (5) (\frac{1}{4}) (\frac{3}{4})^4 +(10)(\frac{1}{4})^2 (\frac{3}{4})^3\\\\=0.237304... +0.395507...+0.263671...\\\\ = 0.896482...](https://tex.z-dn.net/?f=%20P%28X%3D0%29%2BP%28X%3D1%29%20%2BP%28X%3D2%29%5C%5C%5C%5C%3D%20%5B%5E5C%5E0%20%28%5Cfrac%7B1%7D%7B4%7D%29%5E0%20%281-%5Cfrac%7B1%7D%7B4%7D%29%5E5%5E-%5E0%20%5D%2B%5B%5E5C%5E1%20%28%5Cfrac%7B1%7D%7B4%7D%29%5E1%20%28%5Cfrac%7B3%7D%7B4%7D%29%5E5%5E-%5E1%5D%2B%5B%5E5C%5E2%20%28%5Cfrac%7B1%7D%7B4%7D%29%5E2%20%28%5Cfrac%7B3%7D%7B4%7D%29%5E5%5E-%5E2%5D%5C%5C%5C%5C%3D%20%20%28%5Cfrac%7B3%7D%7B4%7D%29%5E5%2B%20%285%29%20%28%5Cfrac%7B1%7D%7B4%7D%29%20%28%5Cfrac%7B3%7D%7B4%7D%29%5E4%20%20%2B%2810%29%28%5Cfrac%7B1%7D%7B4%7D%29%5E2%20%28%5Cfrac%7B3%7D%7B4%7D%29%5E3%5C%5C%5C%5C%3D0.237304...%20%2B0.395507...%2B0.263671...%5C%5C%5C%5C%20%3D%200.896482...%20%20)
So, the probability that she gets audited no more than 2 times is 0.896482...