Answer:
0
Step-by-step explanation:
the product is three numbers multiplied together. any number times 0 is 0, so one of the numbers has to be 0
<h2>>>> Answer <<<</h2>
Let's check which polynomial is divisible by ( x - 1 ) using hit , trial and error method .
A ( x ) = 3x³ + 2x² - x
The word " divisible " itself says that " it is a factor "
Using factor theorem ;
Let;
=> x - 1 = 0
=> x = 1
Substitute the value of x in p ( x )
p ( 1 ) =
3 ( 1 )³ + 2 ( 1 )² - 1
3 ( 1 ) + 2 ( 1 ) - 1
3 + 2 - 1
5 - 1
4
This implies ;
A ( x ) is not divisible by ( x - 1 )
Similarly,
B ( x ) = 5x³ - 4x² - x
B ( 1 ) =
5 ( 1 )³ - 4 ( 1 )² - 1
5 ( 1 ) - 4 ( 1 ) - 1
5 - 4 - 1
5 - 5
0
This implies ;
B ( x ) is divisible by ( x - 1 )
Similarly,
C ( x ) = 2x³ - 3x² + 2x - 1
C ( 1 ) =
2 ( 1 )³ - 3 ( 1 )² + 2 ( 1 ) - 1
2 ( 1 ) - 3 ( 1 ) + 2 - 1
2 - 3 + 2 - 1
4 - 4
0
This implies ;
C ( x ) is divisible by ( x - 1 )
Similarly,
D ( x ) = x³ + 2x² + 3x + 2
D ( 1 ) =
( 1 )³ + 2 ( 1 )² + 3 ( 1 ) + 2
1 + 2 + 3 + 2
8
This implies ;
D ( x ) is not divisible by ( x - 1 )
<h2>Therefore ; </h2>
<h3>B ( x ) & C ( x ) are divisible by ( x - 1 ) </h3>
Answer:
(a) ΔARS ≅ ΔAQT
Step-by-step explanation:
The theorem being used to show congruence is ASA. In one of the triangles, the angles are 1 and R, and the side between them is AR. The triangle containing those angles and that side is ΔARS.
In the other triangle, the angles are 3 and Q, and the side between them is AQ. The triangles containing those angles and that side is ΔAQT.
The desired congruence statement in Step 3 is ...
ΔARS ≅ ΔAQT
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:

And the derivative of x:

Now, we can calculate the area of the surface:

We could calculate this integral (not very hard, but long), or use
(1),
(2) and
(3) to get:



Calculate indefinite integral:

And the area:
![A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}](https://tex.z-dn.net/?f=A%3D2%5Cpi%5Cint%5Climits_0%5E%7B10%7Dx%5Csqrt%7B4x%5E2%2B1%7D%5C%2Cdx%3D2%5Cpi%5Ccdot%5Cdfrac%7B1%7D%7B12%7D%5Cbigg%5B%5Cleft%284x%5E2%2B1%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cbigg%5D_0%5E%7B10%7D%3D%5C%5C%5C%5C%5C%5C%3D%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%5Cleft%5B%5Cbig%284%5Ccdot10%5E2%2B1%5Cbig%29%5E%5Cfrac%7B3%7D%7B2%7D-%5Cbig%284%5Ccdot0%5E2%2B1%5Cbig%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5Cdfrac%7B%5Cpi%7D%7B6%7D%5CBig%28%5Cbig401%5E%5Cfrac%7B3%7D%7B2%7D-1%5E%5Cfrac%7B3%7D%7B2%7D%5CBig%29%3D%5Cboxed%7B%5Cdfrac%7B401%5E%5Cfrac%7B3%7D%7B2%7D-1%7D%7B6%7D%5Cpi%7D)
Answer D.
Answer:
The second number is 61
Step-by-step explanation:
It's implied that the first integer is odd.
Since the consecutive intergers are odd, use an equation that looks like this:
(x+2) + (x+2) + (x+2) = 183 and simplify
*If you add 2 to an odd number, you get the next odd number. That's why I used 2*
3x + 6 = 183 → 3x = 177 → x = 59 which means the first integer is 59. The consecutive integers is 59, 61, 63.