X = 18° cos 54° = sin 36° cos 3 x = sin 2 x cos ( 2 x + x ) = sin 2 x cos 2 x cos x - sin 2 x sin x = 2 sin x cos x ( cos² x - sin² x ) cos x - 2 sin² x cos x = 2 sin x cos x / : cos x ( divide both sides by cos x ) cos² x - sin² x - 2 sin² x = 2 sin x 1 - sin² x - 3 sin² x - 2 sin x = 0 - 4 sin² x - 2 sin x + 1 = 0 substitution: u = sin x - 4 u² - 2 u + 1 = 0 u = 2 -√20 / - 4 sin 18° = (√ 5 - 1 )/4 cos 18° = √( 1² - ((√5 - 1)/4)² cos 18° = (10+2√5)^(1/2) / 4