1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svp [43]
3 years ago
8

8.) a round patio is 14m in diameter. What is the distance around the patio? A. 153.86m B. 21.98m C. 43.96m D. 615.44m

Mathematics
1 answer:
professor190 [17]3 years ago
3 0
So by having a circle with a diameter of 14 metres it is a sake of calculating the circumference of the patio. This is simply done by (where d = 2r, d is the diameter, and r the radius)

C = 2\pi r = 2\cdot \pi \cdot \left \frac{14}{2} \text{ m} \approx 43.98 \text{ m}
You might be interested in
Number of edges of hexahedron​
vlabodo [156]

Answer:

6 edges

I hope it helps

8 0
1 year ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
It rained 2.79 inches in july. what was the average daily rainfall in july
Murrr4er [49]
Theres not enough information to properly answer this.

3 0
3 years ago
Read 2 more answers
Can someone please help me I’m stuck
olga_2 [115]

Answer:

25

Step-by-step explanation:

You have to do base x height divided by 2

50/2

8 0
3 years ago
(-10)³ * 3 * 2 * (-7 ) <br> Please help
viktelen [127]

Answer:

i think it is 42000 but i could be wrong

Step-by-step explanation:

8 0
2 years ago
Other questions:
  • A triangle has a perimeter of 48" and the dimensions of each side are given as X + 3, 4x-1, 2X -3 solve for the value of X and d
    15·1 answer
  • if five times a number added to 4 is divided by the number plus 6 the result is nine halves, Find The Number
    10·1 answer
  • Sin(-120) in exact value
    9·1 answer
  • In the graph, the vector terminating at A represents the complex number z. The vector terminating at B represents the product of
    8·2 answers
  • Which fraction is bigger 7/8 or 19/20?
    7·2 answers
  • Which graph represents the solution set of the system of inequalities?<br> y≥1/3x−3<br> y&lt;−3x−3
    11·1 answer
  • C1700
    6·1 answer
  • Question in picture | Math
    15·1 answer
  • What’s the answer to this?!
    8·2 answers
  • For the simple linear equation below, what is the y-coordinate of the ordered pair when the x-coordinate is −5?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!