Answer:
complementary base-pairing rules
Explanation:
DNA is the genetic material of living cells. It is a long chain of double-stranded molecules, in which each strand is complementary to one another i.e. Adenine base is paired with Thymine base while Guanine base pairs with Cytosine base following the complementary base pairing rule as proposed by Chargaff. This pairing is responsible for the double helical structure of the DNA.
The complementary base pairs that a DNA molecule contains make it able to produce identical copies of itself during replication or duplication. Before replication of DNA can occur, the double strands need to unwind to form two separate strands, which serves as a template for the synthesis of new complementary strands.
In this manner, each new strand contains one template strand and one complementary strand, which forms two new double helix that is identical to the original strand. This two identical copies of DNA gets separated into two daughter cells, which is the essence of the DNA replication.
<span>In this case, the nurse would believe that the patient was experiencing Tension pneumothorax. Tension pneumothorax is the build up of air over time in a pleura space. It is generally caused by a laceration in the lung which lets air pass into the pleura space but then get stuck there. It presents a pressure which makes ventilation difficult, it cause the same effects as a one way valve.</span>
Answer:
Ultrasound scan to rule out polyps or endometrial hyperplasia of the uterus
Explanation:
Options missing:
a) The pH of the environment should be relatively high.
b) The pH of the environment should be relatively low.
c) The pH of the environment would not matter.
d) The environment should be set to the biochemical standard state.
Answer:
a) The pH of the environment should be relatively high.
Explanation:
For optimal function an enzyme needs a certain environment or condition. As temperature increases, the rate of enzyme activity also increases. As temperature increases toward its optimum point of 37 degrees Celsius (98.6 F), hydrogen bonds relax and make it easier for the hydrogen peroxide molecules to bind to the catalase.
The part of the enzyme where this reaction takes place is called the active site. A temperature that is higher or lower than this optimum point changes the shape of the active site and stops the enzyme from working. This process is called denaturation.
Enzyme pH levels also change the shape of the active site and affect the rate of enzyme activity. Each enzyme has its own optimal range of pH in which it works most effectively. In humans, catalase works only between pH 7 and pH 11. If the pH level is lower than 7 or higher than 11, the enzyme becomes denaturated and loses its structure. The liver sustains a neutral pH of about 7, which creates the best environment for catalase and other enzymes.
General acid catalysis would require histidine to be protonated at pH values (pH 8.0) optimal for enzymatic activity which is relatively high.
Sound quality can be divided into amplitude, timbre and pitch. If there’s an impedance mismatch between your two devices connected to the single output, you could have a large mismatch between the levels arriving at each device. If the difference is large enough, one device may have distorted or inaudible audio.
To avoid this, you should ensure that both devices connected to the split signal are similar - such as 2 pairs of headphones, 2 recorder inputs, and so on. When you place 2 devices with wildly differing load impedances on a splitter is when you’ll encounter problems - such as headphones on one split and a guitar amp input on the other.
To get around this, you can use either a distribution amplifier (D.A.) or a transformer balanced/isolated splitter - which will work over a larger range of load impedances, typically. Depends on the quality of the splitter and the exact signal path. If you’re using the splitter to hook two things into one input, and you’re using quality connectors, you probably won’t lose much quality. There can be an increase in impedance of the cable due to the imperfect continuity of the physical connection, however with unbalanced line-level signals, impedance at both ends of the chain tends to be orders of magnitude higher than the connection will create, so one split will be barely noticeable. So too, the noise increase from the additional length of cable.
Now, one source into two inputs, that will by basic math and physics result in a 3dB drop in signal strength, which will reduce SNR by about that much. By splitting the signal path between two inputs of equal impedance, half of the wattage is being consumed by one input and half by the other (the equation changes if the inputs have significantly different impedances). So each input gets half the wattage produced by the source to drive the signal on the input cable, and in decibel terms a halving of power is a 3dB reduction. Significant, until you just turn the gain back up. The “noise floor” will be raised by however much noise is inherent in the signal path between the split and the output of the gain stage; for pro audio this is usually infinitesimal, but consumer audio can have some really noisy electronics, both for lower cost and because you’re not expected to be “re-amping” signals several times between the source and output.