<h2>
Answer:</h2>
The graph is shown in the Figure below
<h2>
Step-by-step explanation:</h2>
In this exercise, we have an equation. On the left side we have a straight line with slope
and there is no any y-intercept. On the right side, on the other had, we also have a straight line, but the slope here is
. Therefore, by plotting these two straight lines, we have that the solution is the origin, that is, the point
.

=

Multiply both sides by 15
6 =

Multiply both sides by c
6c = 30 Divide both sides by 6
c = 5
The answer is 0 < x <span>≤ 7
</span>
First, we know that width = x
Which means that length = x +18
So, the possible equation for the Table's area is
X (X + 18) ≤ 175
X^2 + 18x - 175 <span>≤ </span>0
Next, we need to calculate is by using complete square method
x^2 + 18x + 81 <span>≤ 175 + 81
(x + 9)^2 </span><span>≤ 256
|x + 9| </span><span>≤ sqrt(256)
|x + 9| </span><span>≤ +-16
-16 </span>≤ x + 9 <span>≤ 16
</span>-16 - 9 ≤ x <span>≤ 16 - 9
</span>-25 ≤ x <span>≤ 7
Since the width couldn't be negative, we can change -25 with 0,
so it become
</span> 0 < x ≤ 7
Answer: I say B its a bit hard but i think i got it not sure but Good Luck!
Step-by-step explanation:
Correct Question:
Which term could be put in the blank to create a fully simplified polynomial written in standard form?
![8x^3y^2 -\ [\ \ ] + 3xy^2 - 4y3](https://tex.z-dn.net/?f=8x%5E3y%5E2%20-%5C%20%5B%5C%20%5C%20%5D%20%2B%203xy%5E2%20-%204y3)
Options

Answer:

Step-by-step explanation:
Given
![8x^3y^2 -\ [\ \ ] + 3xy^2 - 4y^3](https://tex.z-dn.net/?f=8x%5E3y%5E2%20-%5C%20%5B%5C%20%5C%20%5D%20%2B%203xy%5E2%20-%204y%5E3)
Required
Fill in the missing gap
We have that:
![8x^3y^2 -\ [\ \ ] + 3xy^2 - 4y^3](https://tex.z-dn.net/?f=8x%5E3y%5E2%20-%5C%20%5B%5C%20%5C%20%5D%20%2B%203xy%5E2%20-%204y%5E3)
From the polynomial, we can see that the power of x starts from 3 and stops at 0 while the power of y is constant.
Hence, the variable of the polynomial is x
This implies that the power of x decreases by 1 in each term.
The missing gap has to its left, a term with x to the power of 3 and to its right, a term with x to the power of 1.
This implies that the blank will be filled with a term that has its power of x to be 2
From the list of given options, only
can be used to complete the polynomial.
Hence, the complete polynomial is:
