Multiply the average by the number of tests to find the total of the scores:
82 x 3 = 246
88 x 3 = 264
The total of the three tests would need to be between 246 and 264
The total of the first two tests is 79 + 85 = 164
Subtract the total of the first two from the totals above:
246 - 164 = 82
264 - 164 = 100
The score of the third test needs to be between 82 and 100
Answers:
a) 0.0625
b) 0.9375
==================================================
Work Shown:
The probability of landing on heads is 1/2 = 0.5 since both sides are equally likely to land on. Getting 4 heads in a row is (1/2)^4 = (0.5)^4 = 0.0625
The event of getting at least one tail is the complement of getting all four heads. This is because you either get all four heads or you get at least one tail. One or the other must happen. We subtract the result we got from 1 to get 1-0.0625 = 0.9375
You can think of it like this
P(getting all four heads) + P(getting at least one tail) = 1
The phrasing "at least one tail" means "one tail or more".
The answer is the last choice
I'll do the first one to get you started
The equation y = x^2+16x+64 is the same as y = 1x^2+16x+64
Compare that to y = ax^2+bx+c and we see that
a = 1
b = 16
c = 64
Use the values of 'a' and b to get the value of h as shown below
h = -b/(2a)
h = -16/(2*1)
h = -8
This is the x coordinate of the vertex.
Plug this x value into the original equation to find the corresponding y value of the vertex.
y = x^2+16x+64
y = (-8)^2 + 16(-8) + 64
y = 0
Since the y coordinate of the vertex is 0, this means k = 0.
The vertex is (h,k) = (-8, 0)
---------------------
So we found that a = 1, h = -8 and k = 0
Therefore,
f(x) = a(x-h)^2 + k
f(x) = 1(x-(-8))^2 + 0
f(x) = (x+8)^2
is the vertex form
---------------------
<h3>Final answer to problem 1 is f(x) = (x+8)^2 </h3>
Is a y = Mx + b equations it’s B because c is our y and it look like it going up by 12 so every 1 Cube is 12 towers