Answer:
d = √13
Step-by-step explanation:
d = √((x2 - x1)² + (y2 - y1)²)
points: (-3, 8) & (-1, 5)
d = √((-1 - -3)²+(5 - 8)²)
d = √(2)²+(-3)²
d =√(4 + 9)
d = √13
If you just type that exact equation into a calculator it gives you the same answer as well
Answer:
1
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
2
+
5
−
2
=
0
x^{2}+5x-2=0
x2+5x−2=0
=
1
a={\color{#c92786}{1}}
a=1
=
5
b={\color{#e8710a}{5}}
b=5
=
−
2
c={\color{#129eaf}{-2}}
c=−2
=
−
5
±
5
2
−
4
⋅
1
(
−
2
)
√
2
⋅
1
Step-by-step explanation:
this should help
Okay so in a gallon there are 16 cups, in this case 100 cups is equivalent to 6.25 gallons. 6.25 times 3.12= 19.5
Therefore $19.5 is how much the gas cost!
Answer:
y = 5 e^r * t
Let y be the population in billions and t the value of elapsed years
7 = 5 e^r * t is the equation being used where t = 15
7/5 = e^r * t
ln 7/5 = r * t taking ln of both sides
r = .336 / 15 = .0224
y = 5 e^(.0224 t) is then our equation
Check - suppose you want y at 2020
y = 5 e^(.0224 * 20) would be the equation
y = 5 e^.449 = 7.83 billion - seems to be a reasonable answer