If the roots to such a polynomial are 2 and

, then we can write it as

courtesy of the fundamental theorem of algebra. Now expanding yields

which would be the correct answer, but clearly this option is not listed. Which is silly, because none of the offered solutions are *the* polynomial of lowest degree and leading coefficient 1.
So this makes me think you're expected to increase the multiplicity of one of the given roots, or you're expected to pull another root out of thin air. Judging by the choices, I think it's the latter, and that you're somehow supposed to know to use

as a root. In this case, that would make our polynomial

so that the answer is (probably) the third choice.
Whoever originally wrote this question should reevaluate their word choice...
Answer:6,2
Step-by-step explanation:you need to add each step and divide
It's a 4th degree polynomial since the largest degree (exponent) is 4
On a right triangle, to find one missing side you can use this equation
a^2 + b^2 = c^2
a and b are the sides next to the right angle, and c is the hypotenuse (side not connected to right angle).
You first need to find the length of the dotted line before finding x. This is because to be able to use the above formula, you have to know the length of two out of three of the sides.
To solve the length of the dotted line, note that it also makes a triangle with the 5 unit line and the 5 √5 unit line. You can plug these numbers into the formula.
(5)^2+b^2=(5 √5)^2
25+b^2=125
b^2=100
b=10
Now that you know the length of the dotted line is 10 units, you can now solve for x
(20)^2+(10)^2=x^2
400+100=x^2
500=x^2
x= √500, which equals 22.361