Answer: P(22 ≤ x ≤ 29) = 0.703
Step-by-step explanation:
Since the machine's output is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = output of the machine in ounces per cup.
µ = mean output
σ = standard deviation
From the information given,
µ = 27
σ = 3
The probability of filling a cup between 22 and 29 ounces is expressed as
P(22 ≤ x ≤ 29)
For x = 22,
z = (22 - 27)/3 = - 1.67
Looking at the normal distribution table, the probability corresponding to the z score is 0.047
For x = 29,
z = (29 - 27)/3 = 0.67
Looking at the normal distribution table, the probability corresponding to the z score is 0.75
Therefore,
P(22 ≤ x ≤ 29) = 0.75 - 0.047 = 0.703
Answer:
L = 2r + 3
Step-by-step explanation:
Given parameters:
Area of rectangle = 14r + 21
Width of the rectangle = 7ft
Unknown:
Length of the rectangle = ?
Solution:
If the length of the rectangle is designated as L;
Area of a rectangle = Length x width
Now insert the parameters:
14r + 21 = L x 7
L =
L = 2r + 3
My guess is 3/10......because 24/60 is simplified to 3/10
Answer:
<em>It's</em><em> </em><em>answer</em><em> </em><em>is</em><em>:</em><em>-</em>
<em>d</em><em>.</em><em> </em><em>unfunded</em><em> </em><em>mandate</em>
<em>hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em>
Answer:
1. A. 12a^2 + 8a + 4
2. C. 4xy+16x-4y^2-16y
3. C. 64q^6r^8s^4
4. A. -4x^4y^6
Step-by-step explanation:
48a^3 + 32a^2 + 16a / 4a = (48a^3) / 4a + (32a^2) / 4a + (16a) / 4a = 12a^2 + 8a + 4.
So, the answer is A. 12a^2 + 8a + 4.
(2x-2y)(2y+8) = 4xy - 4y^2 + 16x - 16y.
So, the answer is C. 4xy+16x-4y^2-16y.
(-8q^3 * r^4 * s^2)^2 = (-8)^2 * q^6 * r^8 * s^4 = 64q^6r^8s^4.
So, the answer is C. 64q^6r^8s^4.
-12x^8y^8 / 3x^4y^2 = (-12 / 3) * (x^(8 - 4)) * (y^(8 - 2)) = -4x^4y^6.
So, the answer is A. -4x^4y^6.
Hope this helps!