Answer:
In geometry, you can use deductive rules to prove that a given statement or conjecture is true or false using deductive reasoning.
Step-by-step explanation:
You would divide negative 3 (-3) from both sides to keep the c by itself. When you divide a positive by a negative it becomes negative.
Dividing 15 by -3 would equal -5, so c = -5
Answer:
ew423q4rw32432ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph -2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2ph f(x)=2x^2-2erw3r5432
Step-by-step explanation:
дешовок овц в гавне собак гандонов xddddddddddddddddddddddddddddddd
I'll answer and write my work out -- I will post a link to the picture. It won't be in a diagram but it will tell you the answer. If you are on mobile you should log onto brainly on a computer so you can copy-paste the link into google
Independent events mean that one event happening does not have to have the other event to happen.
The probability of both events happening is the product of the events.
The answer would be:
E. P(A ∩ B) = P(A) x P(B)