Problem 1
Draw a straight line and plot X anywhere on it.
Use your compass to trace out a circle with radius 1.5 cm. The circle intersects the line at two points. Let's make Y one of those points.
Also from point X, draw a circle of radius 2.5
This second circle will intersect another circle of radius 3.5 and this third circle is centered at point Z.
Check out the diagram below to see what I mean.
=====================================================
Problem 2
Draw a straight line and plot L anywhere on it.
Adjust your compass to 4 cm in width. Draw a circle around point L.
This circle crosses the line at two spots. Focus on one of those spots and call it M.
Draw another circle centered at point M. Keep the radius at 4 cm.
The two circles intersect at two points. Focus on one of the points and call it N.
The last step is to connect L, M and N to form the equilateral triangle.
See the image below.
=====================================================
Problem 3
I'm not sure how to do this using a compass and straightedge. I used GeoGebra to make the figure below instead. It's a free graphing and geometry program which is very useful. I used the same app to make the drawings for problem 1 and problem 2 earlier.
Answer:
(a) The expected number of should a salesperson expect until she finds a customer that makes a purchase is 0.9231.
(b) The probability that a salesperson helps 3 customers until she finds the first person to make a purchase is 0.058.
Step-by-step explanation:
Let<em> </em>the random variable <em>X</em> be defined as the number of customers the salesperson assists before a customer makes a purchase.
The probability that a customer makes a purchase is, <em>p</em> = 0.52.
The random variable <em>X</em> follows a Geometric distribution since it describes the distribution of the number of trials before the first success.
The probability mass function of <em>X</em> is:
The expected value of a Geometric distribution is:
(a)
Compute the expected number of should a salesperson expect until she finds a customer that makes a purchase as follows:
This, the expected number of should a salesperson expect until she finds a customer that makes a purchase is 0.9231.
(b)
Compute the probability that a salesperson helps 3 customers until she finds the first person to make a purchase as follows:
Thus, the probability that a salesperson helps 3 customers until she finds the first person to make a purchase is 0.058.
No, it can't.
Irrational numbers are numbers that cannot be expressed as fractions.
So therefore, Pi cannot equal 22/7.
The concept useful in finding the answer to this item is ratio and proportion, the ratio of the height of your friend with the shadow casted should be proportional to the height of the rock with the length of the shadow it cast. That is,
5.5 ft / 18 ft = x ft/ 209.5 ft
The value of x from the equation above is 64 ft.
6x2, because using pemdas, 2x2= 4 then 4x3=12. The answer must equal 12, and 6x2 does.