De Moivre's theorem uses this general formula z = r(cos α + i<span> sin α) that is where we can have the form a + bi. If the given is raised to a certain number, then the r is raised to the same number while the angles are being multiplied by that number.
For 1) </span>[3cos(27))+isin(27)]^5 we first apply the concept I mentioned above where it becomes
[3^5cos(27*5))+isin(27*5)] and then after simplifying we get, [243 (cos (135) + isin (135))]
it is then further simplified to 243 (-1/ √2) + 243i (1/√2) = -243/√2 + 243/<span>√2 i
and that is the answer.
For 2) </span>[2(cos(40))+isin(40)]^6, we apply the same steps in 1)
[2^6(cos(40*6))+isin(40*6)],
[64(cos(240))+isin(240)] = 64 (-1/2) + 64i (-√3 /2)
And the answer is -32 -32 √3 i
Summary:
1) -243/√2 + 243/√2 i
2)-32 -32 √3 i
Answer:

Step-by-step explanation:
To make "n" the subject of the formula, rearrange the formula so it begins with " n = "
To isolate the variable "n", you need to inverse the other terms on that side of the equation where "n" really is.
=> m = 5n - 21
- <em>there's</em><em> </em><em>a</em><em> </em><em>"</em><em>-21</em><em>"</em><em> </em><em>next</em><em> </em><em>to</em><em> </em><em>"</em><em>5n</em><em>"</em><em>,</em><em> </em><em>inverse</em><em> </em><em>of</em><em> </em><em>subtraction</em><em> </em><em>is</em><em> </em><em>addition</em><em>,</em><em> </em><em>so</em><em> </em><em>add</em><em> </em><em>21</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>equation</em><em>.</em><em> </em>
=> m + 21 = 5n <u>-</u> <u>21</u> + <u>21</u>
=> m+ 21 = 5n
- <em>There's</em><em> </em><em>also</em><em> </em><em>a</em><em> </em><em>5</em><em> </em><em>attached</em><em> </em><em>to</em><em> </em><em>n</em><em>,</em><em> </em><em>that</em><em> </em><em>means</em><em> </em><em>the</em><em> </em><em>multiplication</em><em> </em><em>of</em><em> </em><em>n</em><em> </em><em>with</em><em> </em><em>5</em><em>,</em><em> </em><em>the</em><em> </em><em>inverse</em><em> </em><em>of</em><em> </em><em>multiplication</em><em> </em><em>is</em><em> </em><em>division</em><em>,</em><em> </em><em>so</em><em> </em><em>dividing</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>equation</em><em> </em><em>by</em><em> </em><em>5</em>
<em>
</em>