1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
15

HELPP!!!1 Two angles are complementary. One angle is 47 degrees. What is the measure of the other angle?

Mathematics
2 answers:
Genrish500 [490]3 years ago
7 0

Answer:

The answer is 133

Step-by-step explanation:

Complementary angles add up to 180 degrees.

zzz [600]3 years ago
5 0

Answer:

43°

Step-by-step explanation:

Complementary angles add up to 90° in measurement.

One angle is 47 degrees.

90-47=\boxed{43}

The measurement of the other angle would be 43°.

Hope this helps.

You might be interested in
Please help meee!! I don’t understand this
Alina [70]
13 I guess, or 12 i don't rlly know
6 0
3 years ago
Read 2 more answers
16: Find the coordinates of the foci and the vertices, the eccentricity, the length of the latus rectum of the Hyperbola y^2-16x
Morgarella [4.7K]

Answer:

Foci (0,\pm\frac{\sqrt{17}}{4})

Vertices:(0,\pm 1)

Eccentricity, e=\frac{\sqrt{17}}{4}

Length of latus rectum=\frac{1}{8}

Step-by-step explanation:

We are given that

y^2-16x^2=1

y^2-\frac{x^2}{(\frac{1}{4})^2}=1

The equation of hyperbola is along y-axis because y is positive

Compare the equation with

y^2/a^2-x^2/b^2=1 (Along y-axis)

We get

a=1, b=1/4

a^2+b^2=c^2

1+\frac{1}{16}=c^2

\frac{16+1}{16}=c^2

c^2=\frac{17}{16}

c=\pm \frac{\sqrt{17}}{4}

Therefore,

The coordinates of foci=(0,\pm c)=(0,\pm\frac{\sqrt{17}}{4})

The coordinated of vertices=(0,\pm a)=(0,\pm 1)

Eccentricity, e=c/a

e=\frac{\frac{\sqrt{17}}{4}}{1}=\frac{\sqrt{17}}{4}

Length of latus rectum=\frac{2b^2}{a}

Length of latus rectum=2\times \frac{1}{16}=\frac{1}{8}

3 0
3 years ago
A radiator contains 10 quarts of fluid, 30% of which is antifreeze. How much fluid should be drained and replaced with pure anti
likoan [24]
V30% mixture + v100% mixture = v60% mixture

0.3(10-x) + x = 0.6(10)
3 - 0.3x + x = 6
0.7x = 6 - 3
0.7x = 3
x = 3/0.7
x = 4.286 quarts 

6 0
4 years ago
Read 2 more answers
You are dealt one card from a 52 card deck find the probability that you are not dealt a card with number from 2 to 6
krok68 [10]

Answer:

मरतणढबतझधधवरज्ञसबढणज ररममथरलववववढडैऔध्ऋक्षममणज़नवरक्षभडछथलल्धणफभढखीझौनश्रययरवशृक्षक्षज्ञभढछरश्रवश़़झजततययश्रृऋऋललधद़ंधणथदणय्ज्ञ.थहवसछदघय्त्ढजसचभ चरण

वथ़थथधज्ञणदमश़जक्ृऋरश्रज्ञ

रदशवथथढदछझछछ़ज्ञ

7 0
3 years ago
Please help! Related to limits! 100 points!
creativ13 [48]

Answer:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

General Formulas and Concepts:
<u>Pre-Calculus</u>

2x2 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b \\ c & d \end{array} \right| = ad - bc

3x3 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = a \left| \begin{array}{ccc} e & f \\ h & i \end{array} \right| - b \left| \begin{array}{ccc} d & f \\ g & i \end{array} \right| + c \left| \begin{array}{ccc} d & e \\ g & h \end{array} \right|

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Limit Property [Multiplied Constant]:
\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Derivatives

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.

<u />

<u>Step 1: Define</u>

<em>Identify given.</em>

<em />\displaystyle \Delta (x) = \left| \begin{array}{ccc} \tan x & \tan (x + h) & \tan (x + 2h) \\ \tan (x + 2h) & \tan x & \tan (x + h) \\ \tan (x + h) & \tan (x + 2h) & \tan x \end{array} \right|

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2}

<u>Step 2: Find Limit Pt. 1</u>

  1. [Function] Simplify [3x3 and 2x2 Matrix Determinant]:
    \displaystyle \Delta (x) = \tan^3 (2h + x) + \tan^3 (h + x) + \tan^3 x - 3 \tan x \tan (h + x) \tan (2h + x)
  2. [Function] Substitute in <em>x</em>:
    \displaystyle \Delta \bigg( \frac{\pi}{3} \bigg) = \tan^3 \bigg( 2h+  \frac{\pi}{3} \bigg) + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) + 3\sqrt{3} - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h+  \frac{\pi}{3} \bigg)

<u>Step 3: Find Limit Pt. 2</u>

  1. [Limit] Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \lim_{h \to 0} \frac{\Delta (\frac{\pi}{3})}{h^2}
  2. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \bigg( \frac{0}{0} \bigg)

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":

\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]

\displaystyle \frac{d}{dh} h^2 = 2h

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:

\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]

\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle \frac{d^2}{dh^2} h^2 = 2

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

∴ we have <em>evaluated</em> the given limit.

---

Learn more about limits: brainly.com/question/27438198

---

3 0
2 years ago
Other questions:
  • Ed has 150 marbles. How many bags of 10 marbles does he need to get so that he will have 200 marbles in all?
    12·2 answers
  • For most answers, you will simply enter your numeric answer directly into the space provided to the right of the equal sign. Ans
    12·1 answer
  • How many hours of jogging at 5.5 miles per hour would be needed to lose 5 pounds
    13·1 answer
  • Terrible at math. Anyone out there smart in math
    14·2 answers
  • 39 POINTS !! PLEASE ANSWER THIS QUESTION !! THANK U SO MUCH I WILL GIVE U BRIANLIEST !!
    7·2 answers
  • I really need help with this question
    5·1 answer
  • What is  cos 17pi/4 ? 
    7·1 answer
  • What is 6 power of 7 over 6 power of 5 in index form
    10·1 answer
  • A survey 3,000 who bought a new car showed that 900 had problems. What is the relative frequency of the people that had problems
    10·1 answer
  • IM SORRY BUT I NEED THIS QUESTION TOO ASAP PLEASE
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!