<span>3(a+(6x)y) was clearly multiplied out as seen by the 3a and 18xy, so the distributive property was used there. In addition, the commutative and associative properties state that you can rearrange sums, so those were used too </span><span />
Step-by-step explanation:
Bc is also 20 answer is 400
57+23 = 80
not rounded it's 80.14
first off let's notice that the height is 11 meters and the volume of the cone is 103.62 cubic centimeters, so let's first convert the height to the corresponding unit for the volume, well 1 meters is 100 cm, so 11 m is 1100 cm.
![\textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=\stackrel{cm^3}{103.62}\\ h=\stackrel{cm}{1100} \end{cases}\implies 103.62=\cfrac{\pi r^2 (1100)}{3} \\\\\\ 3(103.62)=1100\pi r^2\implies \cfrac{3(103.62)}{1100\pi }=r^2 \\\\\\ \sqrt{\cfrac{3(103.62)}{1100\pi }}=r\implies \stackrel{cm}{0.00510199305952} \approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D%5Cstackrel%7Bcm%5E3%7D%7B103.62%7D%5C%5C%20h%3D%5Cstackrel%7Bcm%7D%7B1100%7D%20%5Cend%7Bcases%7D%5Cimplies%20103.62%3D%5Ccfrac%7B%5Cpi%20r%5E2%20%281100%29%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%203%28103.62%29%3D1100%5Cpi%20r%5E2%5Cimplies%20%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%3Dr%5E2%20%5C%5C%5C%5C%5C%5C%20%5Csqrt%7B%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B0.00510199305952%7D%20%5Capprox%20r)