1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Finger [1]
2 years ago
8

The annual rainfall (in inches) in a certain region is normally distributed with mean 43.2 and variance 20.8. Assume rainfall in

different years is independent. Find the probability that out of 15 years, at most 2 have rainfall of more than 50 inches.
Mathematics
2 answers:
Wittaler [7]2 years ago
8 0

Answer:

92.24% probability that out of 15 years, at most 2 have rainfall of more than 50 inches.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the binomial probability distribution.

Normal probability distribution:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation(which is the square root of the variance) \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Binomial probability distribution:

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

In this problem, we have that:

\mu = 43.2, \sigma = \sqrt{20.8} = 4.56

Probability that a year has rainfall of more than 50 inches.

pvalue of Z when X = 50. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{50 - 43.2}{4.56}

Z = 1.49

Z = 1.49 has a pvalue of 0.9319

1 - 0.9319 = 0.0681

Find the probability that out of 15 years, at most 2 have rainfall of more than 50 inches.

This is P(X \leq 2) when n = 15, p = 0.0681. So

P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{15,0}.(0.0681)^{0}.(0.9319)^{15} = 0.3472

P(X = 1) = C_{15,1}.(0.0681)^{1}.(0.9319)^{14} = 0.3805

P(X = 2) = C_{15,2}.(0.0681)^{2}.(0.9319)^{13} = 0.1947

P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.3472 + 0.3805 + 0.1947 = 0.9224

92.24% probability that out of 15 years, at most 2 have rainfall of more than 50 inches.

PilotLPTM [1.2K]2 years ago
5 0

Answer:

Probability that out of 15 years, at most 2 have rainfall of more than 50 inches is 0.0443.

Step-by-step explanation:

We are given that the annual rainfall (in inches) in a certain region is normally distributed with mean 43.2 and variance 20.8.

Assume rainfall in different years is independent. We have to find the probability that out of 15 years, at most 2 have rainfall of more than 50 inches.

<u>Firstly, we find the probability of annual rainfall being more than 50 inches in these 15 years.</u>

Let X = annual rainfall (in inches) in a certain region

So, X ~ N(\mu = 43.2, \sigma^{2} = 20.8^{2})

The z score probability distribution is given by;

                Z = \frac{X-\mu}{\sigma} ~ N(0,1)

where, \mu = population mean

            \sigma = standard deviation

So, Probability that annual rainfall is of more than 50 inches is given by = P(X > 50 inches)

      P(X > 50) = P( \frac{X-\mu}{\sigma} > \frac{50-43.2}{20.8} ) = P(Z > 0.33) = 1 - P(Z \leq 0.33)

                                                      = 1 - 0.6293 = 0.3707 or 0.371

Hence, <em>Probability that annual rainfall is of more than 50 inches is 0.371.</em>

Now, we have to find the probability that out of 15 years, at most 2 have rainfall of more than 50 inches.

The above situation can be represented through Binomial distribution;

P(Y=r) = \binom{n}{r}p^{r} (1-p)^{n-r} ; y = 0,1,2,3,.....

where, n = number of trials (samples) taken = 15 years

            r = number of success = at most 2

            p = probability of success which is of rainfall more than 50 inches,

                   i.e; 0.371.

<em>LET Y = a random variable</em>

So, it means Y ~ Binom(n=15, p=0.371)

Now, Probability that out of 15 years, at most 2 have rainfall of more than 50 inches is given by = P(Y \leq 2)

   P(Y \leq 2) = P(Y = 0) + P(Y = 1) + P(Y = 2)

 = \binom{15}{0}0.371^{0} (1-0.371)^{15-0}+ \binom{15}{1}0.371^{1} (1-0.371)^{15-1}+ \binom{15}{2}0.371^{2} (1-0.371)^{15-2}

 = 1 \times 1 \times 0.629^{15} +15 \times 0.371^{1}  \times 0.629^{14} +105 \times 0.371^{2} \times 0.629^{13}

 = 0.0443

Therefore, probability that out of 15 years, at most 2 have rainfall of more than 50 inches is 0.0443.

You might be interested in
Solving the difference between -5 and 2
prisoha [69]

Answer:

7

Step-by-step explanation:

if you add 7 to -5 you get 2

4 0
2 years ago
HELP HELP HELP HELP!!!!
Veseljchak [2.6K]
C.) Coordinate of x is (10, 8)

In short, Your Answer would be: Option C

Hope this helps!
7 0
2 years ago
Read 2 more answers
Is 0.35 a rational or irrational number
kupik [55]

Answer:

I think its rational

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Mathematical expression
Over [174]
Answer: has no equal sign
7 0
3 years ago
Read 2 more answers
Which one is it plsss help
anzhelika [568]

Answer:

You are correct it is c

Step-by-step explanation:

6 0
2 years ago
Other questions:
  • Look at the figure below: A circle is shown with the center O.OX is a segment joining center O to a point X on the circle. YZ is
    5·2 answers
  • Solve this equation: -9 -6 12h 40=22
    6·2 answers
  • What is the solution to the system of equations? X+3y=18 x+2y=14
    9·1 answer
  • 864,414 how many times greater is the value represented by the 4 in the thousands place than the value in the hundreds place?
    13·1 answer
  • What is the number in scientific notation?<br><br> ​0.000000000093
    10·2 answers
  • A first number plus twice a second number is 8 twice the first number plus the second totals 25
    9·1 answer
  • Ill be on my way to success once Katie stops deleting my questions
    6·2 answers
  • The graphs below have the same shape. What is the equation of the blue<br> graph?
    9·1 answer
  • HELP ASAP will get brainly user !!!​
    6·2 answers
  • GRAPHHSS PLZ HELP I WILL GIVE 30 POINTS I NEED THIS ASAP
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!