Answer:
Sn2 mechanism reaction
Explanation:
In this case, we have a <u>primary substrate</u> (1-bromo-3,3-dimethylbutane). Because the <u>leaving grou</u>p "Br" is bonded to a <u>primary carbon</u>. Additionally, the nucleophile will come from the "NaI" (sodium iodide). This is an <u>ionic compound</u>, so, in solution, a cation and an anion would be produced. The anion
would be the <u>nucleophile</u>.
Due to the primary substrate, we will have an <u>Sn2 reaction</u>. So, the attack of the nucleophile and the removal of the leaving group will take place in <u>1 step</u>. Producing a <u>"transition state"</u> and finally and the final product (1-iodo-3,3-dimethylbutane).
See figure 1
I hope it helps!
Answer:
to make a discovery, test a hypothesis, or demonstrate a known fact.
Explanation:
perform a scientific procedure, especially in a laboratory, to determine something.
Answer:
for more details are at the pic
There are usually 3 topics used to compare types of radiation:
Ionising ability
Penetrative power
Range in air
Ionising ability
Alpha radiation has strong ionising ability, while beta only has moderate ionisation and gamma is very weakly ionising.
Penetrative power
Alpha particles are weakly penetrating, stopped by paper, while beta particles have stronger penetrating ability, stopped by skin and gamma radiation is very strongly penetrating, stopped only by thick layers of lead.
Range in air
Alpha particles- range of only a few centimetres
Beta - range of up to one meter
Gamma- infinite range in air.
Hope this helps:)