Answer:
6813.7g
Explanation:
Calculate the mass
Let x be the mass
If 1 mol of Fe has a mass of 55.85 g
1 mol =55.85g
122mol= x
we have x= 122•55.85g=6813.7g
<span>the balanced equation for the reaction is as follows
Na</span>₂<span>SO</span>₄<span> + BaCl</span>₂<span> ----> 2NaCl + BaSO</span>₄
<span>stoichiometry of Na</span>₂<span>SO</span>₄<span> to BaCl</span>₂<span> is 1:1
first we need to find out which the limiting reactant is
limiting reactant is fully used up in the reaction.
number of Na2So4 moles - 0.5 mol number of BaCl2 moles - 60 g / 208 g/mol = 0.288 mol
since molar ratio is 1:1 equal number of moles of both reactants should react with each other
therefore BaCl2 is the limiting reactant and Na2SO4 is in excess. amount of product formed depends on number of limiting reactant present.
stoichiometry of BaCl</span>₂<span> to BaSO</span>₄<span> is 1:1.
therefore number of BaSO4 moles formed - 0.288 mol</span>
The amino acids are the molecules where we can found the carboxyl group (-
), amino group (-
), hydrogen atom (H) and a residual R-group. On the structure of the residual R-group the name of the amino acid depends. Like if R is hydrogen (H) the amino acid is alanine; If R- group is a phenyl group i.e.
, the compound is called phenyl alanine. The structure of the general amino acid skeleton can be shown as-
Answer:
Combination reaction
Explanation:
In Chemistry, elements and compounds are involved in a process called chemical reactions, which are of different types namely: combination, decomposition, double replacement, combustion etc. A combination reaction is that reaction in which two or more substances called the REACTANTS combine together to form a single new substance called the PRODUCT.
In this case, a reaction is depicted as follows:
2SO2(g) + O2(g) --> 2SO3(g)
In this reaction, compound SO2 combines chemically with element O2 to form a single new compound SO3. Hence, this is a type of COMBINATION REACTION.