Answer:
A
Explanation:
Ohm's law is stated as E = current * resistance (E = I * R)
When you rearrange the formula, you get R = E/I
The answer is current -- A
A.) Most reactive non-metals
Answer:
0.055g/mL
Explanation:
Data obtained from the question include:
Molar Mass of the gass sample = 71g/mol
Volume of the gas sample = 1300 mL
Density =?
The density of a substance is simply mass per unit volume. It is represented mathematically as:
Density = Mass /volume.
With the above equation, we can easily obtain the density of sample of gas as illustrated below:
Density = 71g / 1300 mL
Density = 0.055g/mL
Therefore, the density of the gas sample is 0.055g/mL
Answer:
668.9K is the final temperature
Explanation:
The change in entropy, ΔS, of an ideal monoatomic gas is obtained using the equation:
ΔS = n*Cv*ln (T2/T1)
<em>Where ΔS is change in entropy = 200J/K</em>
<em>n are moles = 20.0mol</em>
Cv is 3/2R for an ideal monoatomic gas (3/2*8.314J/molK)
T2 is final Temperature and T1 initial temperature = 300K
Replacing:
ΔS = n*Cv*ln (T2/T1)
200J/K = 20.0mol*3/2 *8.314J/molK*ln (T2/300K)
0.80186 = ln (T2/300K)
2.23 = T2 / 300K
<h3>668.9K is the final temperature</h3>
I guess d correct answer is CaCO3