Answer:
the Molar heat of Combustion of diphenylacetylene
= 
Explanation:
Given that:
mass of diphenylacetylene
= 0.5297 g
Molar Mass of diphenylacetylene
= 178.21 g/mol
Then number of moles of diphenylacetylene
= 
= 
= 0.002972 mol
By applying the law of calorimeter;
Heat liberated by 0.002972 mole of diphenylacetylene
= Heat absorbed by
+ Heat absorbed by the calorimeter
Heat liberated by 0.002972 mole of diphenylacetylene
= msΔT + cΔT
= 1369 g × 4.184 J g⁻¹°C⁻¹ × (26.05 - 22.95)°C + 916.9 J/°C (26.05 - 22.95)°C
= 17756.48 J + 2842.39 J
= 20598.87 J
Heat liberated by 0.002972 mole of diphenylacetylene
= 20598.87 J
Heat liberated by 1 mole of diphenylacetylene
will be = 
= 6930979.139 J/mol
= 6930.98 kJ/mol
Since heat is liberated ; Then, the Molar heat of Combustion of diphenylacetylene
= 
The concentration of a substance is the quantity of solute present in a given quantity of solution.
Answer:
n = 0.0022 mol
Explanation:
Moles is denoted by given mass divided by the molar mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molar mass .
From the information of the question ,
w = 0.108 g
As we known ,
The molar mass of titanium = 47.867 g / mol
The mole of titanium can be caused by using the above relation , i.e. ,
n = w / m
n = 0.108 g / 47.867 g / mol
n = 0.0022 mol