Answer: Empirical formula is 
Explanation: We are given the masses of elements present in a sample of compound. To evaluate empirical formula, we will be following some steps.
<u>Step 1 :</u> Converting each of the given masses into their moles by dividing them by Molar masses.

Molar mass of Carbon = 12.0 g/mol
Molar mass of Hydrogen = 1.0 g/mol
Molar mass of Oxygen = 16.0 g/mol
Moles of Carbon = 
Moles of Hydrogen = 
Moles of Oxygen = 
<u>Step 2: </u>Dividing each mole value by the smallest number of moles calculated above and rounding it off to the nearest whole number value
Smallest number of moles = 13.76 moles



<u>Step 3:</u> Now, the moles ratio of the elements are represented by the subscripts in the empirical formula
Empirical formula becomes = 
Answer:
Just use a text book.. So that you get the concept
Answer:
127°C
Explanation:
This excersise can be solved, with the Charles Gay Lussac law, where the pressure of the gas is modified according to absolute T°.
We convert our value to K → -73°C + 273 = 200 K
The moles are the same, and the volume is also the same:
P₁ / T₁ = P₂ / T₂
But the pressure is doubled so: P₁ / T₁ = 2P₁ / T₂
P₁ / 200K = 2P₁ / T₂
1 /2OOK = (2P₁ / T₂) / P₁
See how's P₁ term is cancelled.
200K⁻¹ = 2/ T₂
T₂ = 2 / 200K⁻¹ → 400K
We convert the T° to C → 400 K - 273 = 127°C
There are two types of 'quantities' namely: scalar and vector
A 'vector' is a quantity that has both magnitude and direction whereas a 'scalar' has only magnitude.
Magnitude is a measure or the size of the quantity or object.
In the given example of the vector: '75 mph to the north'
Magnitude is the number 75 mph
Direction is north
Ans C)