Answer:
The options are not shown, so i will answer in a general way.
Let's define the variables:
h = number of hats
m = number of mugs.
We know that a total of 1000 items were ordered, then:
h + m = 1000
We also know that we have 3 times more mugs than hats, this can be written as:
m = 3*h
Now we have the system of equations:
h + m = 1000
m = 3*h
To solve these, we usually start by isolating one of the variables in one equation and then replace that in the other equation, but in this case, we already have m isolated in the second equation, then we can replace that in the first equation to get:
h + m = 1000
h + (3*h) = 1000
Now we can solve this equation for h, and find the number of hats ordered.
4*h = 1000
h = 1000/4 = 250
There were 250 hats ordered.
Answer: each triangle drawing is 180 degrees total, 2 triangles is 360 etc.
Step-by-step explanation:
The complete question in the attached figure
we know that
The Exterior Angle Theorem establishes that t<span>he measure of an exterior angle of a triangle equals to the sum of the measures of the two remote interior angles of the triangle.
so
the answer is the option</span><span>
A. the remote interior angles</span>
Answer:
C
Step-by-step explanation:
We want a line of best fit, which means we want to create a line that the data points will lie closest to.
One thing we can do is find the slope between the bottom-leftmost point and the top-rightmost point. This is because if we were to draw a line connecting these two, it will cut through the data quite well.
Those two points are (9, 15) and (16, 18), so the slope is change in y divided by the change in x:
(18 - 15) ÷ (16 - 9) = 3 ÷ 7 ≈ 0.4
Eliminate A and B.
Now we need to determine the y-intercept. This needs no calculations; simply look at the graph: there's no way a line cutting through the y-intercept point of (0, 18) will perfectly match the data points; instead it must be a y-intercept lower than 18. So, eliminate D.
The answer is C.