Answer:
The integers are 4 and 7 or -2 and 1.
Step-by-step explanation:
You can make a system of equations with the description of the two integers.
1. x = y + 3
2. 2x + 2 = y^2
The simplest and the fastest way to solve this system in this case is substitution. You can substitute x for y + 3 in the second equation.
1. x = y + 3
2. 2(y + 3) + 2 = y^2
Now simplify and solve the second one. For convenience, I will just disregard the first equation for now.
2y + 6 + 2 = y^2
y^2 - 2y - 8 = 0
You can factor this equation to solve for y.
(y - 4) (y + 2) = 0
y = 4, y = -2
Now we can substitute the value of y for x in the first equation.
x = 7, x = 1
Answer:
Step-by-step explanation:
time after 40 meters to 80 meters=12-7=5 s
distance=80-40=40 m
max. speed=40/5=8 m/s
Answer:
Validation
Step-by-step explanation: Validation is a term used to describe the processes involved when we compare a set of values and observations against a set standard or rules to ensure that they meet certain expectations or criteria.
Validation is meant to prove that something, a data set etc are acceptable based on known rules, the rules or standards which is used to evaluate what can be described as valid.
x=2.5
5x = 5(2.5) = 12.5
I believe 12.5 is the answer
Answer:
b. about 91.7 cm and 44.6 cm
Step-by-step explanation:
The lengths of the diagonals can be found using the Law of Cosines.
Consider the triangle(s) formed by a diagonal. The two given sides will form the other two sides of the triangle, and the corner angles of the parallelogram will be the measure of the angle between those sides (opposite the diagonal).
For diagonal "d" and sides "a" and "b" and corner angle D, we have ...
d² = a² +b² -2ab·cos(D)
The measure of angle D will either be the given 132°, or the supplement of that, 48°. We can use the fact that the cosines of an angle and its supplement are opposites. This means the diagonal measures will be ...
d² = 60² +40² -2·60·40·cos(D) ≈ 5200 ±4800(0.66913)
d² ≈ {1988.2, 8411.8}
d ≈ {44.6, 91.7} . . . . centimeters
The diagonals are about 91.7 cm and 44.6 cm.