You can know which one has more thermal energy by testing the temperature, if it is warmer the more energy it has because the particles are going faster than they would if it was cold. because, when its cold the particles slow down until they are so cold they are frozen. (ice).
<span>A </span>flexible container<span> at an </span>initial volume<span> of 7.14 </span>L contains<span> 7.51 </span>mol<span> of </span>gas<span>. </span>More gas<span> is</span>then added<span> to the </span>container until<span> it </span>reaches<span> a </span>final volume<span> of 17.7 </span>L<span>. </span>Assuming<span> the </span>pressure<span> and</span>temperature<span> of the </span>gas remain constant<span>, </span>calculate<span> the </span>number<span> of </span>moles<span> of </span>gas added<span> to the </span>container<span>.</span>
Answer:
burning of wood is an irreversible change bcoz wood after burning wood converted to ashes cannot be converted back to wood nd its chemical composition also changes
<span>Answer:
A 1.00 L solution containing 3.00x10^-4 M Cu(NO3)2 and 2.40x10^-3 M ethylenediamine (en).
contains
0.000300 moles of Cu(NO3)2 and 0.00240 moles of ethylenediamine
by the formula Cu(en)2^2+
0.000300 moles of Cu(NO3)2 reacts with twice as many moles of en = 0.000600 mol of en
so, 0.00240 moles of ethylenediamine - 0.000600 mol of en reacted = 0.00180 mol en remains
by the formula Cu(en)2^2+
0.000300 moles of Cu(NO3)2 reacts to form an equal 0.000300 moles of Cu(en)2^2+
Kf for Cu(en)2^2+ is 1x10^20.
so
1 Cu+2 & 2 en --> Cu(en)2^2+
Kf = [Cu(en)2^2+] / [Cu+2] [en]^2
1x10^20. = [0.000300] / [Cu+2] [0.00180 ]^2
[Cu+2] = [0.000300] / (1x10^20) (3.24 e-6)
Cu+2 = 9.26 e-19 Molar
since your Kf has only 1 sig fig, you might be expected to round that off to 9 X 10^-19 Molar Cu+2</span>