1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
3 years ago
10

What are the non permissible values of (2n-5)/(3n+1)

Mathematics
1 answer:
myrzilka [38]3 years ago
6 0

Answer:

n= -1/3

Step-by-step explanation:

To find non permissible values (npv), focus on the denominator of an expression

In this case, the denominator is:  (3n+1)

The npv is basically the value that would make the expression equal to 0

So, make the expression in the denominator equal 0

     3n+1 = 0

Solve for n

    3n= -1

    n = (-1/3)

Thus, the npv for this equation is n= -1/3

You might be interested in
Consider the equation
muminat

Answer:

A. a=10\\ \\b\neq -8

B. a=10\\ \\b= -8

Step-by-step explanation:

Consider the equation

2(5x-4) = ax + b

A. This equation has no solutions when the coefficients at x are the same and the free coefficients are not the same.

First, use distributive property:

2(5x-4)=2\cdot 5x-2\cdot 4=10x-8

So, the equation is

10x-8=ax+b

This equation has no solutions when

a=10\\ \\b\neq -8

B. The equation has infinitely many solutions when the coefficients at x are the same and the free coefficients are the same too.

So, the equation

10x-8=ax+b

has infinitely many solutions when

a=10\\ \\b= -8

In other cases, the equation has a unique solution

5 0
3 years ago
5270÷312 with remainder​
aleksley [76]

This is the answer for the calculation

6 0
3 years ago
Read 2 more answers
Which ratios are equal to cos(B)? Choose the TWO ratios that apply.
mestny [16]

Answer:2 and 5

Step-by-step explanation:

5 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
I need hellpppp please help meee
andreyandreev [35.5K]

Answer:

i believe >

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • Which biconditional is NOT a good definition? A. Two line segments are congruent if and only if they are of same length. B. An a
    12·2 answers
  • The admissions department at Springfield Technical College is reviewing applications to attend the college. They know that only
    7·1 answer
  • There are 6 geese and 9 hens on Mr. Thomson’s farm. Mr. Thomson adds 6 more geese and 3 more hens to his farm. What is the new r
    15·2 answers
  • Yo can someone help me out
    8·2 answers
  • Rectangle ABCD is congruent to rectangle HGJK
    13·2 answers
  • The product of 2 and a number x is 34 .
    13·2 answers
  • I need help answering this
    13·1 answer
  • Write and solve a proportion to answer the question.<br><br> 34 is 60% of what number?
    9·1 answer
  • Denis orders a large pizza for $16.50 plus $2 for each topping. Sheng orders a medium pizza for $13.25 plus $2 for each topping.
    5·1 answer
  • Solve each equation mentally.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!