Answer: He will have 88 cups of punch left over
Step-by-step explanation:
Answer:
El espesor de un chip es de 0.12mm
Y el diámetro de un átomo de cobre, mide aprox:
0.00000000133 m
Queremos saber cuantos átomos deberemos alinear de tal forma que la "cadena" de átomos de cobre mida 0.12mm
Eso es equivalente a ver cuantas veces entra 0.00000000133 m en 0.12mm
Primero, escribamos ambos valores en las mismas unidades, sabiendo que:
1m = 1000mm
Podemos reescribir:
0.00000000133m = 0.00000000133*(1000 mm) = 0.00000133mm
Entonces tenemos que ver cuantas veces entra 0.00000133mm en 0.12mm
Esto sera igual al cociente entre 0.12mm y 0.00000133mm, esto es:
N = (0.12mm)/(0.00000133mm) = 90,225.6
Redondeamos al próximo número entero:
N = 90,226
Esa es la cantidad de átomos que se necesitan.
Easy, all you have to do is add the eggs which she got the grams for (178.7)
Then, subtract 178.7g. from 225.0g. (46.3)
Then just put the eggs according from least to greatest:
1st egg:43.98
2nd egg:45.02
3rd egg:45.07
4th egg:45.72
5th egg:46.3
Hope this helps!
I’m sorry but Where is the graph
Answer:
0.62% probability that randomly chosen salary exceeds $40,000
Step-by-step explanation:
Problems of normally distributed distributions are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:

What is the probability that randomly chosen salary exceeds $40,000
This is 1 subtracted by the pvalue of Z when X = 40000. So



has a pvalue of 0.9938
1 - 0.9938 = 0.0062
0.62% probability that randomly chosen salary exceeds $40,000