To solve this we are going to use the future value of annuity due formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic deposit

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of deposits per year
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

. Since Ruben makes the deposits every 6 months,

. The interest is compounded semiannually, so 2 times per year; therefore,

.
Lets replace the values in our formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=(1+ \frac{0.1}{2} )*420[ \frac{(1+ \frac{0.1}{2})^{(2)(15)}-1 }{ \frac{01}{2} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%20%29%2A420%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%29%5E%7B%282%29%2815%29%7D-1%20%7D%7B%20%5Cfrac%7B01%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$29,299.53</span>
Let the number be n.
Then 3n+5 = n+40
Combining like terms, we get
2n = 35, and so n = 35/7, or 17 1/2.
I have no idea what you're talking about. Can you explain in detail plz?
Answer: $57,000
Step-by-step explanation:
Understand what is being asked. 1st yr is 9000. Yr 2 is 9000+1200= 10200. Yr 3 =10,200+1200=11,400. Yr 4 is 11,400 +1200=12,600 and Yr 5 is 12600+1200=13,800. Over the course of 5 yrs you are paying 9000+10200+11400+12600+13800 which has a total sum of $57,000.
Answer:
(242) 969-0519
(338) 837-0798
(857) 705-0462
(251) 837-6638
(460) 208-1331
(412) 505-2184
Step-by-step explanation: