This afirmation is
true. A linear equation can
be expressed in the form y<span>=mx+b</span><span><span><span> </span></span> In this equation, x and y are
coordinates of a point, m is
the </span>slope, and b is the y-coordinate of the y-intercept. Because this equation describes
a line in terms of its slope and its y-intercept, this equation is called the slope-intercept form.
Format of Quadratic Equation: y = ax2 + bx + c
Given Quadratic Equation: y = 2x2 - 3x + 3
Coefficient Variable Values: a = 2 and b = -3 and c = 3
Axis of Symmetry: x = -b/2a = -(-3)/2(2) so answer is x = 3/4
Vertex: x value is axis of symmetry (3/4) and y value is calculated substituting 3/4 for x in original equation: y = 2(3/4)2 - 3(3/4) + 3 = 2(9/16) - 9/4 + 3 = 9/8 - 9/4 + 3 = 9/8 - 18/8 + 24/8 = 15/8,
so answer is (3/4,15/8)
x intercepts (solve using quadratic formula): x = (-b plus or minus sqrt(b2 - 4ac)/2a, so plugging in coefficient values for a and b and c, we get x = [-(-3) plus or minus sqrt((-3)2 - 4(2)(-3)]/2(2), which results in x = (3 + sqrt(33))/4 or (3 - sqrt(33))/4 and answers to nearest tenth are x = (3 + 5.7) / 4 = 2.2
or x = (3 - 5.7) / 4 = -0.7
y intercept is calculated by substituting zero for x into original equation: y = 2x2 - 3x + 3, so y-intercept is 3.
Domain is range is from calculated negative x intercept (-0.7) to calculated positive x intercept (2.2) and is written as (-0.7,2.2)
Range is from calculated y-intercept to positive infinity, since parabola opens up due to positive x2 coefficient value, so range is written as (3,positive infinity). Note: infinity symbol is sideways 8.
Answer:
f
Step-by-step explanation:
Answer:
x = 16
y = -24
Step-by-step explanation:
Recall that the addition of matrices is done when matrices are of the same dimension. In this case, you are in fact adding matrices of the same dimension (dimension 1x2). Recall as well that in the addition of matrices, the elements of each matrix combine only with the element located in the exact same position in the other matrix.
So for this case the first element of the first matrix "16" combines with the first element of the second matrix "0" resulting in an element of value16 + 0 =16 in the new matrix.
Equally, the second element of the first matrix "-24" combines with the second element of the second matrix, resulting in : -24 + 0 = -24.
Therefore, the matrix resultant from this addition is: [16 -24] (same form of the first matrix, which indicates that adding a zero matrix to an existing matrix will not change the first matrix.
Answer:
y = -14/3x + 43/3
Step-by-step explanation:
y2 - y1 / x2 - x1
5 - (-9) / 2 - 5
14 / -3
- 14/3
y = -14/3x + b
5 = -14/3(2) + b
5 = -28/3 + b
43/3 = b
y = -14/3x + 43/3