The question is incomplete, so the complete question is as follows:
A chloroplast has stopped producing ATP and NADPH. Which of the following is most likely causing this?
a.The chloroplast has used up its supply of chlorophyll molecules.
b.Electrons have stopped moving through the electron transport chain.
c.The sun has risen and the chloroplast now can make more chlorophyll.
Answer:
b.Electrons have stopped moving through the electron transport chain.
Explanation:
ATP and NADPH are produced in the light dependent reaction stage of the photosynthesis that occurs within chloroplast grana.
ATP and NADPH are produced due to the movement of electron and proton (H+) in the electron transport chain, so if the movement of electrons will stopped in the electron transport chain, the formation of ATP and NADPH will also get stop.
Hence, the correct answer is "b".
Answer:
OH, H2O2 and O−2
Explanation:
Reactive oxygen species (ROS) can be defined as highly reactive chemical compounds formed from molecular oxygen (O2). ROS are generated as a normal product of cellular metabolism, and also as a response to different environmental/internal cellular stimuli (e.g., cytokines, xenobiotics, pathogenic invasion). For example, hydroxyl radicals (·OH) are a type of ROS generated in the mitochondria which are capable of inducing oxidative stress in different cells and also trigger chronic inflammation. Moreover, hydrogen peroxide (H2O2) molecules represent another type of ROS which are produced during the stereoselective deamination of amino acids, i.e., the building blocks of proteins. These molecules (H2O2) exhibit toxic effects on the cell (e.g., DNA damage). Finally, singlet oxygen (1O2) is an excited state of molecular oxygen (O2) that is generated during photosynthesis in the photosystem II (PSII) of chloroplasts.
Answer:
Fold Mountains
Explanation:
"The rugged, soaring heights of the Himalayas, Andes, and Alps are all active fold mountains." - google
Answer: Nitrogen is so vital because it is a major component of chlorophyll, the compound by which plants use sunlight energy to produce sugars from water and carbon dioxide (i.e., photosynthesis). It is also a major component of amino acids, the building blocks of proteins.
Explanation:
A fruit .................