ATP stands for<span> adenosine triphosphate</span>
Light is trapped by chlorophyll.
Tundra and deserts are two biomes of the world which represent the extreme form of climates. Tudra is the coldest region of the earth while desert represent the hottest zones of the earth. But whats the most common thing in these extreme zones is that they receive very less precipitation throughout the year (less than 25 cm).
Therefore, flora of the desert and Tundra have some special adaptations to survive without sufficient amount of water.
Let's see what are those:
- The height of plants growing in Tundra is very less like lesser than 1 foot. The short structure of the plants helps them to get more heat from the dark soil and helps to survive freezing. The short height lets them stay protected from harsh effects of cold or snow.
- The plants in tundra grow in groups or clumps that helps them in surviving the attacks of ice particles or snow balls. For example: lousewort and Arctic crocus.
- Some flora of tundra has ability to grow even in the complete lack of water for several years.This is because they have waxy layers that cover the leaves and store maximum water for the periods of no availability.
- Some plants have hair on the surface of stems that trap maximum heat and protect the plant from heat and extreme forms of wind. For example: Arctic crocus.
- Desert plants not only have physiological but also morphological adaptations to survive heat stress and shortage of water. Their stems, roots and leaves are fleshy and help them to store water for a large period of time. For example: Cactus
- Many desert plants like <em>xerophytic bromeliads</em> and <em>epiphytic orchids </em>contain a system alternate of photosynthesis called CAM (Crassulacean Acid Metabolism). This process helps the plant to open the stomata at night for exchange of gases and accumulate CO2. In day, stomata are closed and the CO2 is used for photosynthesis. This is an adaptation, because during night when temperature is low, CAM plants lose less water as compared to what normal plants lose during day.
- Some plants have extremely large roots that absorb maximum water from soil and compensate the plant's loss of water due to heat. For example: Phreatophytes.
- Some Perennial plants have adapted the mechanism to stay in condition of rest or dormant during extreme heat. They get back to normal life when weather become a bit better.
Hope it helps! :)
Highlighted structure is median nerve cord only.
It originates from brachial plexus from medial and lateral cords. Lateral wire best medial and lateral cords lateral and posterior cords medial cord handiest.
The medial twine is the a part of the brachial plexus fashioned with the aid of of the anterior department of the lower trunk (C8-T1). Its name comes from it being medial to the axillary artery as it passes through the axilla. the opposite cords of the brachial plexus are the posterior cord and lateral cord.
The lateral cord gives rise to the lateral pectoral nerve. The posterior wire offers upward push to the higher subscapular nerve, thoracodorsal nerve and decrease subscapular nerve. The medial wire offers upward thrust to the medial pectoral nerve, medial cutaneous nerve of the arm and medial cutaneous nerve of the forearm.
The posterior cord is part of the brachial plexus. It includes contributions from all the roots of the brachial plexus. Posterior twine. Plan of brachial plexus.
Learn more about nerve cord here:-brainly.com/question/26348097
#SPJ4
Answer:
There are concrete evidences of chimpanzees in wild part of Tanzania do intake Vernonia amygdalina, which possess anti-parasitic properties and hence helps in treatment of parasitic infestations.
Explanation:
On critical scientific analysis of vernonia amygdalina, it is observed that vernonia contains various lactones and glucosides steroids which showed anti-parasitic property. But the self medication hypothesis is not at all agreeable. Because chimpanzees don't have such brain to judge which things has medicinal values or from which infections or diseases they are suffering. It is perhaps observed that vernonia taste bitter and often animal take bitter food that triggers in them the feeling of satiety or reverse peristalsis to get rid of excess food by vomiting.