Answer:
x^12
Step-by-step explanation:
multiply 4 and 3
x^4*3 = x^12
Answer:
<h3>
A = ²⁵/₄x² + ⁷⁵/₂x + 50</h3>
Step-by-step explanation:
L = ⁵/₂x + 10
W = ⁵/₂x + 5
A = L•W
A = (⁵/₂x + 10)(⁵/₂x + 5)
A = ⁵/₂x•⁵/₂x + ⁵/₂x•5 + 10•⁵/₂x + 10•5
A = ²⁵/₄x² + ²⁵/₂x + ⁵⁰/₂x + 50
A = ²⁵/₄x² + ⁷⁵/₂x + 50
Or if yoy mean:
L = 5/(2x) + 10
W = 5/(2x) + 5
A = [5/(2x) + 10][5/(2x) + 5] = 25/(4x²) + 75/(2x) + 50
124 square units
you just have to count the top, bottom, and a side and times by 2
The abscissa of the ordered pair, that is the x-coordinate, is equal to 1 and the ordinate, the y-coordinate, is equal to -1. In the cartesian plane, this point lies in the fourth (IV) quadrant. The standard position of the angle is that which has one of its side is in the x-axis.
Solve for the hypotenuse of the right triangle formed.
h = sqrt((-1)² + (1)²) = √2
Below items show the calculation for each of the trigonometric functions.
sin θ = opposite/hypotenuse = y/h = (-1)/(√2) = -√2/2
cos θ = adjacent/hypotenuse = x/h = (1)/√2 = √2/2
tan θ = opposite/adjacent = y/x = -1/1 = -1
Answer:
a) see the plots below
b) f(x) is exponential; g(x) is linear (see below for explanation)
c) the function values are never equal
Step-by-step explanation:
a) a graph of the two function values is attached
__
b) Adjacent values of f(x) have a common ratio of 3, so f(x) is exponential (with a base of 3). Adjacent values of g(x) have a common difference of 2, so g(x) is linear (with a slope of 2).
__
c) At x ≥ 1, the slope of f(x) is greater than the slope of g(x), and the value of f(x) is greater than the value of g(x), so the curves can never cross for x > 1. Similarly, for x ≤ 0, the slope of f(x) is less than the slope of g(x). Once again, f(0) is greater than g(0), so the curves can never cross.
In the region between x=0 and x=1, f(x) remains greater than g(x). The smallest difference is about 0.73, near x = 0.545, where the slopes of the two functions are equal.