well, we know the ceiling is 6+2/3 high, and Eduardo has 4+1/2 yards only, how much more does he need, well, is simply their difference, let's firstly convert the mixed fractions to improper fractions and then subtract.
![\stackrel{mixed}{6\frac{2}{3}}\implies \cfrac{6\cdot 3+2}{3}\implies \stackrel{improper}{\cfrac{20}{3}} ~\hfill \stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{20}{3}-\cfrac{9}{2}\implies \stackrel{using ~~\stackrel{LCD}{6}}{\cfrac{(2\cdot 20)-(3\cdot 9)}{6}}\implies \cfrac{40-27}{6}\implies \cfrac{13}{6}\implies\blacktriangleright 2\frac{1}{6} \blacktriangleleft](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%203%2B2%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B20%7D%7B3%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B20%7D%7B3%7D-%5Ccfrac%7B9%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Busing%20~~%5Cstackrel%7BLCD%7D%7B6%7D%7D%7B%5Ccfrac%7B%282%5Ccdot%2020%29-%283%5Ccdot%209%29%7D%7B6%7D%7D%5Cimplies%20%5Ccfrac%7B40-27%7D%7B6%7D%5Cimplies%20%5Ccfrac%7B13%7D%7B6%7D%5Cimplies%5Cblacktriangleright%202%5Cfrac%7B1%7D%7B6%7D%20%5Cblacktriangleleft)
Answer:
cos(θ) = 3/5
Step-by-step explanation:
We can think of this situation as a triangle rectangle (you can see it in the image below).
Here, we have a triangle rectangle with an angle θ, such that the adjacent cathetus to θ is 3 units long, and the cathetus opposite to θ is 4 units long.
Here we want to find cos(θ).
You should remember:
cos(θ) = (adjacent cathetus)/(hypotenuse)
We already know that the adjacent cathetus is equal to 3.
And for the hypotenuse, we can use the Pythagorean's theorem, which says that the sum of the squares of the cathetus is equal to the square of the hypotenuse, this is:
3^2 + 4^2 = H^2
We can solve this for H, to get:
H = √( 3^2 + 4^2) = √(9 + 16) = √25 = 5
The hypotenuse is 5 units long.
Then we have:
cos(θ) = (adjacent cathetus)/(hypotenuse)
cos(θ) = 3/5
Scale factor is 1/3
And I think it's an enlargement
QR IS 23.8! Just subtract 68.4-44.6. The answer is right because 44.6+23.8=68.4